

For superb colour, use EEV vidicons

EEV vidicons - with magnetic or electrostatic focusing - are available in matched sets for colour cameras. These outstanding tubes are selected and matched for picture geometry and uniformity of sensitivity. They help to make better colour pictures by improving registration, signal-to-noise ratio and system sensitivity without sacrificing other performance parameters.

Have you heard also of the latest vidicons that $E E V$ is making for monochrome pictures vidicons with fibre-optic faceplates, with enhanced infra-red sensitivity, or for use in ultra-low light conditions, or in dangerously high radiation environments or in missiles? Whatever your vidicon need - colour or black and white - get in touch with us. We're likely to be able to meet it.

ENGLISH ELECTRIC VALVE COMPANY LIMITED
Chelmsford, Essex, England Phone : 61777 Telex: 99103 Grams : Enelectico Chelmsford

Image Orthiconsa new brochure from EEV

This new brochure gives a summary of the EEV range of Image Orthicons, applications and brief data. Full information, including characteristic curves and operational conditions together with outline diagrams, is available on request. But for an introduction to the range, send for a free copy of our new brochure.

Please send me a copy of your Image Orthicon brochure.
\qquad
POSITION

COMPANY

ADDRESS

We trust we will be forgiven by the makers of the world famous 57 varieties for our claim that ANDERS MEANS METERS. When it comes to variety, the Anders range of meters is the largest and most comprehensive in the country - Panel Mounting and Portable ... Moving Coil, Moving Iron, Electrostatic, Thermo-Couple, Motammeters,

Frequency Meters, Wattmeters, Contact Meters . . . plus Current transformers, Shunts and other ancillary items. Many requirements can be supplied off the shelf. Fast delivery of non-standard instruments, in small or large quantities.

ANDERS ELECTRDIIIS LIMITED

48/56 Bayham Flace, Bayham Street, London, N.W. 1 Telephone 01-387 9092.
Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM
Resonant Reed Frequency meters and Tachometers.

Heathkit tor rastumentaion

The Heathkit range of scientific and electronic test instruments including the latest advances in solid state instrumentation has been especially prepared for the industrial and scientific laboratory instrument user. Whatever your requirements, be they Potentiometric Chart Recorders. Monochromators, Universal Digital Instruments as well as VVMs and general test instruments, substantial savings against similar specifications of other manufacturers can be made by using Heathkit instrumentation.

THE LATEST SOLID-STATE 'VVM' PLUS AC AND DC CURRENT, Model IM-25 is typical of the Heathkit ultra-functional instrumentation styling.

- 9 AC and 9 DC voltage ranges from 150 millivolts to 1500 volts full scale.
- 7 resistance ranges. 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{~K}, \times 10 \mathrm{~K}, \times 100 \mathrm{~K}$, and $\times 1$ Meg measures from 1 ohm to 1000 M ohms.
- 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale.
- 11 M ohm input impedance on DC.

Kit K/IM-25 £36.16.0 Carr. 11/-

- 10 Megohm input impedance on A.C.
- A.C. response to 100 kHz .
- $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre for positive and negative voltage measurements without switching.
- Internal battery power of $120 / 240$ volt A.C. 50 Hz .
- Circuit board construction for extra rugged durability.

Ready to Use A/IM-25£47.6.0 Carr. 11/-

RESTYLED TEST, SERVICE AND WORKSHOP INSTRUMENTS

The Heathkit range of instrumentation can adequately provide engineers with quality instruments at lowest cost, whatever your requirements, be they VVMs. Generators, Oscilloscopes. Transistor Testers or Power Supplies.

FOR THE HOME WORKSHOP

The householder and hobbyist can, by purchasing easy-to-build Heathkits, obtain low cost models for testing household appliances, automobile circuitry, electrical/electronic models.

SEND FOR THE 1970
FREE HEATHKIT CATALOGUE
and see for yourself the wide range of instruments,
$\mathrm{Hi}-\mathrm{Fi}$, Amateur and Leisure products

DAYSTROM LTD, Gloucester GL2 6EE, England. Tel: Glos 29451. Telex: 43216

(1) Registered trade mark of Chaude Lyons Limiled

With every Claude Lyons Regulac comes the benefit of 35 years' experience in variable transformers. Regulacs come in hundreds of models from smallsingle units for laboratory or instrument use to large ganged assemblies for high-power 3 -phase operation at outputs from 210VA to 28.8 kVA and above.

The range includes portable, dual-output and oilimmersed models plus many high-frequency and special types-and is constantly being extended.

Regulacs provide smooth, continuous adjustment of voltage output from zero to line voltage andabove, either hand-operated or motor-driven. No device is more useful, versatile and reliable for the control, of $A C$ voltage.

LI

AUDID FRDM GARDNERS

Exceptionally wide band microphone and audio line matching transformers

FREQUENCY RANGE
100 K.ohm models $\pm 1 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.
All other models $\pm 0.5 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. MAXIMUM AUDIO LEVEL + $12 \mathrm{dBm}(16 \mathrm{~mW})$.
INPUT IMPEDANCE maintained to within $\pm 10 \%(\pm 20 \% \mathrm{j})$ at all frequencies within the range $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$ (to $5 \mathrm{kc} / \mathrm{s}$ only for 100 K.ohm models).
MAGNETICALLY SCREENED
-50 dB reduction in hum pick up.

For professional recording and broadcast transmission equipment, these Octal-based plug-in transformers have a frequency response extending well beyond the audio range. The design achieves dynamic performance with minimum distortion at all levels

Type No.	Input Z Ohms	Pin Nos. \dagger	Output Z Ohms	Pin Nos.	Sec./Pri. Turns Ratio	Applications
MU. 7521	3.75/15*	1-3, 2-4	600 (С.T.)	6-7-8	6.32:1/12.64:1	Low Z. Mic/Line
MU. 7522	3.75/15*	1-3, 2.4	100 K .	6-8	82:1/164:1	Low Z. Mic/Grid
MU. 7523	75/300*	1-3, 2-4	600 (C.T.)	6-7-8	1-41:1/2-82:1	Line/Line
MU. 7524	150/600*	1-3, 2-4	600 (C.T.)	6-7-8	$1: 1 / 2: 1$	Mixing : Bal./Unbal.
MU. 7525	600 (C.T.)	6-7.8	300/1 $\cdot 2 \mathrm{~K}$ *	1-3, 2-4	1+1:1.41 (С.T.)	Mixing : Hybrid \ddagger
MU. 7526	600 (С.T.)	6-7-8	$2.5 \mathrm{k} / 10 \mathrm{k}$.*	1-3, 2-4	2.04:1/4.08:1	Line/Grid
MU. 7527	150/600*	1-3, 2-4	100k.	6-8	13:1/26:1	Line/Grid
MU. 7528	7.5/30*	1-3, 2-4	600 (C.T.)	6-7-8	4-47:1/8.94:1	Low Z. Mic./Line
MU. 7529	50/200*	1-3, 2-4	600 (С.T.)	6-7-8	1-73:1/3-46:1	Mic. or Line/Line
MU. 7530	10K. (С.т.)	6-7.8	10K.	$1-4$	1 (C.T.) :1	600 Line Bridging
MU. 7532	7.5/30*	1-3, 2-4	100k.	6-8	58:1/116:1	Low Z. Mic./Grid
MU. 7534	50/200*	1-3, 2-4	100k.	6-8	22-4:1/44.8:1	Mic. or Line/Grid

Type MU. 7525 may be used in "Hybrid" circuits, as shown, to establish 2 to 4 wire operation in telephony. Accurate balancing of the windings enable guaranteed rejection of better than $-55 d B$ from $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Up to - 75 dB may be expected for normal rejection levels.

GARDNERS TRANSFORMERS LIMITED
Christchurch, Hampshire BH23 3PN. Tel. Christchurch 2284 (STD 02015 2284)

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS $-12 \frac{33^{\prime \prime}}{} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}^{\prime \prime}$
Complete the coupon and post today.

QUAD
for the closest approach to the original sound

ww

TRIO's TS-510 is the definitive instrument especially engineered for complete "SSB ERA" function. It's a high power, high stability product of imaginative design that fully lives up to the renowned "TRIO" name. Extremely stable VFO, a new development that is built around 2 FET's and 13 transistors, guar antees stable QSO's during entire use, an accurate double-gear tuning mechanism and a linear tuning capacitor produce a 1 kHz direct reading on all bands. There's easy tuning in of SSB signals because the TS-510's frequency coverage has been compressed to 25 kHz for one complete rotation of the dial. Sharp cutoff for both reception and transmission is achieved by a sharp factor frequency filter built just
for this 510 series model.
Combined with the TS-510's superb features are the distinctive, top quality PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator). With an AC power supply that operates a built-in 16 cm speaker, the PS-510 has been created as an exclusive companion instrument for the TS-510. It can be installed at any location with the PS -510 because the power supply is regulated on or off at the TS-510.
The VFO-5D can match the TS-510 in performance and design. Its reading accuracy is unusually high since a double-gear dial covering 25 kHz per revo lution is also used, as in the TS-510

TO: B.H. Morris \& Co., (Radio) Lid.
Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME
AGE
ADDRESS

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann. Bruxelles 6. Belgium

Some notes on Bridge Measurement by WAYNE KERR

Number 7

High Precision Bridges

The Transformer Ratio Arm Bridge offers considerable advantages when it is necessary to compare basic standards. For example, the calibration of precision capacitors may be performed to a fundamental accuracy of better than one part in a million. This is achieved by employing specially constructed transformers which incorporate carefully considered design features. One of these features is the reduction of leakage inductance to a minimum; and figure I illustrates the importance of this parameter:

The effect of inductance $1 u$ and shunt capacitance C_{3} is to increase the voltage applied to the Unknown and, hence, the current through it. Current increase also occurs on the standard side of the bridge and if similar cables are used to connect both the standard and unknown impedances, the shunt capacitances due to these cables will be approximately equal. The three terminal facility provided by the neutral connection of the transformer effectively removes the electrical shunt effect of these cables apart from the voltage increase already described. However, transformers can be designed with only a few microhenrys leakage inductance and the effect of this, considered with the capacitance of several feet of connecting cable, can be less than one part in 10^{7}.

Figure 2 shows a high precision bridge network suitable for the comparison of basic standards. The calibration of unknown against standard is carried out entirely with variable transformer tappings and this arrangement is unaffected by ambient temperature variation and is virtually ageless.

Transformer T_{1} is arranged to produce voltages for the standard side of the bridge in the ratios of $1.2,1.1$, 0.9 and 0.8 to 1 . By connecting the input winding of Transformer T_{2} to any two adjacent taps maximum ratios of 10% or 20% can be set, either high or low compared to the unknown side of the bridge. T_{2} is provided with eleven taps from $0-10$ and can therefore interpolate each 10% tolerance band in steps of 1%. T_{3} provides 0.1% interpolation in a similar manner and further transformers can be added to give finer subdivisions limited only by the ability of the bridge amplifier to discriminate the subdivided steps from noise as the network is balanced.

The cascade arrangement of transformers together with moden core materials and careful winding geometry enables similar impedances to be compared to a very high degree of accuracy.

One example of the application of this technique is the determination of permittivity. Identical coaxial cells equipped with guard rings and screens connected to neutral can be used. One is filled with a standard liquid such as cyclohexane and the second filled with the liquid to be evaluated. A wide range of hydrocarbons can be measured with this apparatus and the presence of moisture or other contaminants established.

Solid state microwave

SOLID STATE MICROW AVE DEVICES available from EMI-VARIAN include power sources, multipliers and diodes. The device we illustrate is an X Band voltage-tuned signal source. It consists of a transistor oscillator, varactor tuned, coupled to a step-recovery diode harmonic generator. A waveguide filter section selects the required harmonic.
Three frequency variants offer continuous coverage in the range 8.5 GHz to 9.6 GHz , each tunable over 400 MHz , which is also the electronic tuning range.

Outstanding characteristicsinclude low voltage operation, wide operating temperature range, lightweight 8 oz . (230 g) with rugged construction and an indefinite life.
The unique capability of EMI-VARIAN in research, design, development and manufacture of microwave tubes, associated devices and components is at your service.
For product information and assistance with microwave application problems, contact:

Heathkit Stereo Hi-fi

Are you a do-it-yourself man? Would you like to own a first-class Hi -fi outfit at a do-it-yourself price? The wide range of world-famous Heathkit products offers something for everyone.

STEREO 'COMPACTS'

The newest additions to the Heathkit range are two "stereo compacts". The AD-27, pictured left includes a turntable unit with a Shure magnetic cartridge, an FM stereo tuner and a 30 watt stereo amplifier. The whole is built into an attractive compact teak or walnut veneered cabinet - all for a kit price of only $£ 82$! The AD-17 compact is similar but does not have the FM radio facility and uses a simpler but still attractive cabinet This kit only costs $£ 54$.

STEREO TUNER AMPLIFIERS

If you need a Tuner-Amplifier, we can offer models to suit any pocket. Pictured on the left is the very popular Heathkit AR-14. This is a solid-state stereo Tuner-Amplifier with a sensitive FM tuner, a built-in stereo decoder and a 30 watt stereo amplifier (15 watts I.H.F.M. per channel). It is wonderful value at a kit price of $£ 54$.

STEREO 'SEPARATES'

If your preference is "separates", or perhaps you want just a stereo amplifier without a tuner, again Heathkit offers a selection. Typical is the TSA- 12 stereo amplifier. illustrated. This is a solid state stereo amplifier (15 watts I.H.F.M. per channel) at a kit price of only $£ 32160$. We have radio tuners to match either for FM reception only. or for FM and Long and Medium wave. The Stereo Tuner, model TFM-IS costs only f28 140 in kit form.

LOUDSPEAKER SYSTEMS

All the units described above can be used with any good hi-fi loudspeakers. To cover this need, the Heathkit range includes several hi-fi loudspeaker kits. The Berkeley kit features a 12 in . bass loudspeaker and a 4 in . highfrequency unit, a ready finished teak or walnut veneered cabinet, and the kit price is only $£ 2140$. The 'Avon' mini kit is only $£ 1380$.

OAYSTROM LTD, GLOUCESTER, GL2-6EE.
Tel: Glos 29451. Telex 43216.

See the complete range in the FREE CATALOGUE!

2Watt and 3Watt Professional IC Audio Amplifiers now availahle

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite!
These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf together with data/ application brochures (Price 1s. 9d. each) which include PC board layouts for mono and stereo. Obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS 12 2TU
Tel : Leeds 636311 Telex : 55147

Characteristic
Output power r.m.s.
Input impedance
Preamplifier
Main amplifier
Distortion
Preamplifier
Main amplifier
Frequency response
Lower-3dB point
Upper-3dB point
Operating voltage
Min. operating load

SL402A	SL403A
$2 W$	$3 W$
$20 \mathrm{M} \Omega$	$20 \mathrm{M} \Omega$
$100 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
0.1%	0.1%
0.3%	0.3%
20 Hz	20 Hz
30 kHz	30 kHz
+14 V	+18 V
7.5Ω	7.5Ω

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants.
Tel : Portsmouth (0793) 62332 or 62180 Telex : 86114

家四吕

The best pick－up arm in the world

Valuable new handBook FREE EOMGINTIUORS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR

 REFUND OF FEE' termsThis remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulatien Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng - Refrigcration - Elem. Electrical Science - Electrical Science Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hy draulics - Mining - Water Supply - Petrol Tech.

RADIO ENG

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam. MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Sheet Metal Work - Welding - Eng. Pattern Making -Inspection-Draughtsmanship-- Metallurgy - Production Eng.
AUTOMOBILE ENG
Advanced Automobile Eng. Gen. Automobile Eng. - Ausomobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Manage ment.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.M.R.I.B.A. A.M.I.MUN.E., C.ENG. C.M.G. CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY D\|I ALDERMASTON COURT, ALDERMASTON, BERKSHIRE
 and without obligation.

POST GOUPON NOW!

TO B.I.E.T., D11 ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." 1 am interested in (state subject, exam., or career).

NAME
ADDRESS

WRiTE IF YOU PREFER NOT TO CUT THIS PAGE

SOLE U.K. DISTRIBUTORS OF

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

- LOW cost quick delivery over 200 ranges in stock other RANGES TO ORDER

NEMV			
CLEAR PLASTIC METERS		BAKELITE PANEL METERS	
	TYPE SW. 100	TYPE S-80	
	$100 \times 80 \mathrm{~mm}$.	80 mm .	
		square fronts	
${ }_{50 \mu \text { A }} \ldots \ldots . . .89 / 8$	sov. D.C..... 59/6		50v. D.C. $\ldots \ldots$. 48/6
$100 \mu \mathrm{~A}6 .67 / 6$	1 mmp . D.C... 59/8	${ }^{100 \mu \mathrm{~A}}$.t. $58 / 8$	1 amp. D.C. ... 49/8
	5 amp. D.C... 59/6		B amp. D.C. ... 48/6
20v. D.C.... 59/6	300V. A.C. .. 59/6	20v. D.C....... 48/8	300 V . A.C. \ldots 52/6

"SEW" CLEAR PLASTIC METERS

Type MR.5RP. 2fin. square fronts.	
	10v. D.C.
${ }_{50} 000-50 \mu \mathrm{~N} \quad . . .58$.	20v. D.C.
$100 \mu \mathrm{~A}$........ 52%	${ }^{6} 0$
$100-0 \cdot 100 \mu \mathrm{LA} \quad . .47 / 6$	300
	15 v.
	300 V. A.C.
${ }^{5 m A}$.......... 401-	8 Meter lma
$10 \mathrm{~mA} \mathrm{......}$.	vu Mete
boma 40/.	1 amp. A.c.-
100 mA $40 /$.	5 amp. A.C.
500 mA 40 /-	10 amp A.C.
$1 \mathrm{smp}, \ldots4010$	20 mmp .
	30 amp .

Type MR.6SP. 3lia. \times 3ilin. fronts.	
${ }^{50 \mu \mathrm{~A}}$. ${ }^{\text {a }}$.	20V.
	150 V . D.
${ }_{1000-0.100 \mu 4}$.. $52 /$	300 V . D.C
	15
	150 V A
	${ }^{150 V}$ (1) A
	600V. Ac
	8 meter
100 ma	vu
1 amp. 421.	10
5 amp.	${ }^{2} 200 \mathrm{ma}$
15 amp.	1 mmp .
	${ }_{5} \mathrm{mmp}$. A.
33 ampp. $42 /$ -	10 map
amp.	${ }^{20} \mathrm{n}$
D.c.:	mp.

*MOVING IRON ALL OTHERS MOVING COIL Please add postage

EDGWISE METERS Type PE. 70.3 27/32in. $\times 1$ 15/32in. $\times 2 \frac{1 \mathrm{in} .}{}$ Type P
doep.
dopa

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS-DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF

 TMK mutrimetersThis range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money combined with quality and accuracy of measurement - IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED

5025
MD. 120

PL. 436
500

TW. 50k
\star All models fitted overload protection and supplied with batteries, prods and instructions.

MODEL MD-120 Yeaturen Mirror Gcale, Low Lass $\mathbf{S w}^{\text {siltch and Robust Morempnt }}$ 44. 12.6
 Decibels: -20 to +63 db . Rugged High Impact Plastic Case, size $3 \mathrm{fin} . \times 4 \mathrm{itn}$. $\times 1 \mathrm{in}$

MODEL TW-50K Peatures 46 ranges, mirror scale. Sensitirity, 50 k (V)/Volt D.C. $\mathrm{C8}$. $\mathbf{1 0 . 0}$

 A.C. Volta: $2.5,10,25,100,250,500,1,000 \mathrm{~V}$. D.C.C.Curent: $50 \mu \mathrm{AA}$. $5.50,500 \mathrm{~mA}$. $\mathrm{D} / \mathrm{p} 2 / 6$
 Dustprool Black Plastic Cise

MODEL 5025 Featurea 57 Ranges, Olant 5fin. Meter, Polarity Reverne 8 itch. Sensi- $\mathbb{C 1 2 . 1 0 . 0}$ $250.500,1,000 \mathrm{~V}$. A.C. Volts: $1.5, \mathbf{3 , 5}, 10,2,50,123,23,500,1,000 \mathrm{~V}$. D.C. Current:
 10MEGO. Dc
$21 \mathrm{ma} \times \mathrm{iln}$.

MODEL 100,000 O.P.V. LAB TESTER Features Unique Range Selector, 6$\} \mathrm{in}$. Scale $\mathbf{1 8} \mathbf{1 8} \mathbf{1 8} 0$ MODEL Bhort Circuit Check. Sensitivlty: 100,000 OPV D.C. $5 \mathrm{k} / \mathrm{Volt}$ A.C. D.C. Vorte: 18 . 18.0
Buzzer 10. $100 \mu \mathrm{~A} .10$. $00.300 \mathrm{~mA}, 2.5,10 \mathrm{mmp}$. Resibtance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEO}$, Giln. \times alin.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER

VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality - Low price - Immediate delivery

ALL MODELS
INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0-260 VOLTS
MODEL S-260
General Purpose
Bench Mounting

$$
\begin{aligned}
& 1 \text { Amp } \\
& \text { f5.10.0 MODEL S-260 B } \\
& \text { 2.5 Amp } \\
& 5 \text { Amp } \\
& 8 \text { Amp } \\
& 10 \text { Amp } \\
& 12 \mathrm{Amp} \\
& \text { 69.15.0 } \\
& \text { £14.10.0 2.5 Amp } \\
& \text { \& } 18.10 .0 \\
& \text { £21.0.0 } \\
& 20 \text { Amp } \quad \text { ③7.0.0 Special discounts for quality }
\end{aligned}
$$

 G 18 watts. Fitted 3/32 ${ }^{\prime \prime}$ bit for miniature work on production lines. In ierchangeabie spare bits, $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available For 240,220 or 110 volts. $32 / 6$.

E 20 warts. Fitted with $1 / 4^{\prime \prime}$ bit.
Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\circ}$. 3/16" available. For $240,220,110$ volis. From 35/.

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit.
Interch arigeable bit $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ ovailable. Ideal for high spoed production IInes. For 240, 220, 110, 24 of 12 volts. From 35/.

F 40 watts. Fitted $5 / 16^{\circ}$ blt.
Interchangeable bits $1 / 4^{\circ}, 3 / 16^{\circ}$., 1/8 ${ }^{\circ}$, 3/32" available. Very high temperature iron. For $240,220,110,24$ or 20 volts. From $42 / 6$ Spare bits and elements for all models and voltages immediately availeble from stock. $\square \square \square \square \square \square$

nis ki \rightarrow a a rigid plastic cool-b:" - contains

- Moder CN 15 wams minimure iron waths mi" thit Interchangeable spare bit's. $\boldsymbol{H}^{\prime \prime}$. ${ }^{\text {an }}$
spare bits 14
solde
- Fell deaning pad
- Stanc for soldering iran

PLUS 36-page booklet on
"How-to-Solder"-a mine
of information for amateur and professiona

From Eloctrical and Radio Shope or nend cas: - 6

15 wats 240 /
15 watts - 240 volts
Fitted with nickel plated bit ($3 / 32^{\prime \prime}$) and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.

PRECISION MINIATURE SOLDERING IRONS
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymauth 67377/8:
Telex: 45296. Giro No. 2581000Please send me the Antex colour cataloguePlease send me the following irons Quantity Model Bit Size Volts Price
\qquad
\qquad

I enclose cheque/P.O./cash value

NAME
ADDRESS

for your miniature soldering iron.
..WW12

People expect too much

 from our
quartz crystal units and filters

and they get it!

Look what we have to offer. SEI produce a range of quartz crystal units and filters which can be relied on to perform to specification, even under the most exacting conditions. Our standard ranges usually cover most customers requirements, but in addition a design and prototype service is available for more specific applications. The reliability, robustness and quick delivery have resulted in many repeat orders in the communications industry, including units to military specifications.
Send for our catalogue, it is free and very comprehensive.

SALFORD ELECTRICAL INSTRUMENTS LIMITED SEI
TIMES MILL, HEYWOOD, LANCASHIRE.
TEL: HEYWOOD 69911 . Telex: 66711
G.C.

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3}{4}^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3^{\prime \prime}}{}{ }^{\prime} \times 13 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

None of this "see if you can squeeze it up to 100 watts".
"Well it gets there at 2.875 KHz - anyway this is P.A., not HiFi - so who cares what the distortion is so long as it is not
more than 6 or 7 per cent." The S.N.S. CD. 100 amplifier gives a pure, fully transistorised power output of 100 watts
at 1 KHz with distortion less than 1 per cent. You are probably saying "I've heard it all before". So have we! That is why we have built an amplifier which will set new standards in craftsmanship and performance.
To prove it we will loan you one for a seven day free trial.

The CD. 100 illustrated is a single input unit giving 100 watts RMS output for 25 mV input at 1 KHz so it can be driven by any tuner or tape machine or, of course, the output of a mixer. 50/100 volt line output (0-50-0-50) *Distortion less than 1 per cent at 1 KHz . *Full short circuit protection with the exclusive S.N.S. Current Lok circuit. "Ample thermal capacity to ensure the transistors run within their limits at 100 watts continuous Sine Wave. All these plus points, and many more, make the CD. 100 yet another S.N.S. success.

S.N.S. COMMUNICATIONS LTD.

851 RINGWOOD ROAD - WEST HOWE - BOURNEMOUTH - HANTS - ENGLAND
Telephone Northbourne 4845/2663. Telegrams: Flexicall Bournemouth - Telex: 41224
Manufacturers of: Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones, Cabinet and Line Source Loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.

This is a high fidelity amplifier (. 3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.s.

Size $14^{\prime \prime} \times 11 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
Weight 20lb.
$100 \mu \mathrm{~V}$ on $30 / 60 \mathrm{ohm}$ mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or 200-240v. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its, own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced input and Hi Z gram.

Scrap-heap for valves

Before a Mullard industrial receiving valve goes into full production it will have been running in the factory for 6-9 months. That way our mistakes end up on the valve scrap-heap - not with the customer. We make good use of that time, too. At design stage, the prototype valve is put through Ioo feasibility tests. Either improvements are made, or it's rejected. Then we set up a trial production line. More improvements - or rejections. Mullard valves go through a lot to bring you reliability.
The time we spend on pre-production trials cuts your equipment down-time - another reason it pays to ask your supplier for Mullard.
Mullard
Mullard Limited Industrial Electronics Division
Mullard House Torrington Place London W C I oI-580 6633
New Buyers Guide
There's a new wallchart on Mullard special quality receiving valves. It gives comprehensive equivalents information, and it's free from any Mullard Industrial Distributor or use the reader enquiry service.

Mullard

Gothic Electrical Supplies Ltd., Gothic House, Henrietta Street, Birmingham 19.

Birmingham: Aston Cross 4301
Hawnt \& Company Ltd., $112 / 114$ Pritchett Street, Birmingham 6.

Bristol 294313

Wireless Electric Ltd., 'Wirelect House', 122/123 St. Thomas Street, Bristol I.

Crawley 28700
SASCO, Gatwick Road, Crawley, Sussex.
Glasgow: Douglas 2711
Harper Robertson Electronics Ltd., 97 St. George's Road, Glasgow C. 3 .

Leeds 35111

Farnell Electronic Components Ltd., 8i Kirkstall Road, Leeds 3.

London: Elgar 7722
Cables \& Components Ltd., Park Avenue, London N.W.io.

London: New Cross 973I
Edmundsons Electronics Ltd., 60-74 Market
Parade, Rye Lane, London S.E.I5.

Leicester: Leicester 6856I

Townsend-Coates Ltd., Coleman Road, Leicester.

Rochdale 474II

Swift-Hardmans, P.O. Box 23, Hardale House, Baillie Street, Rochdale.

Sheffield 2716 ${ }^{\prime \prime}$
Needham Engineering Co. Ltd., P.O. Box 23, Townhead Street, Sheffield I.

COMPLETE:
Integrated Circuit Stereo Amplifier System in one package - incorporating tone, balance and volume control unit, bridge rectifier and smoothing circuit. All you need now is a deck, transformer and speakers!
SMALLER:
Micro-electronic circuitry (the Plessey SL403 i.c.) means the Britmac Integrated Circuit System is smaller and more compact than ever-yet still capable of delivering 7 Wrms .

CHEAPER:

Nothing can touch the Britmac Integrated Circuit System at the price-just £8. 19.6d complete. How? Why? Because it comes direct from manufacturer to user - no middleman's profit!
SPECIFICATION:
Power Input $14.5 \mathrm{~V} . \mathrm{AC}$
Speaker Impedance 8 Ohms/channel
Total Output - Typical 7Wrms
Distortion- 0.4% Response- 20 Hz to 20 KHz
Bass -12 to $+18 \mathrm{~dB} @ 20 \mathrm{~Hz}$
Treble -12 to $+14 \mathrm{~dB} @ 10 \mathrm{KHz}$
1/P Sensitivity 250 mV
Recommended Cartridge 9TAHC etc

Direct to you from
BRITMAC ELECTRONICS
Send the coupon today for the only COMPLETE Integrated Circuit Stereo Amplifier on the market at $£ 8.19 .6 \mathrm{~d}$ direct to you at manufacturer's price! A high quality transformer is available for 11.5 . $0 \mathrm{~d} \mathrm{incl} . \mathrm{P} \& \mathrm{P}$.

WW-027 FOR FURTHER DETAILS

Before we sell you a Shure microphone we try to ruin it

juss to make sure that you never will

Microphones have to be rugged. Think of the punishment they take. That s why Shure Safety Communications Microphones get a tremendous going over before we dream of selling them.

We drop them. We vibrate them. We fry them. We freeze them. We steam them in Turkish baths. We drag them behind fast moving cars. We subject them to all kinds of torture. Sand. Rain. Infra-red. Ultra-violet. Acids. Alcohol. Salt spray. Wind. Electrostatic fields. High altitude . . .

and still they work

This savage testing, backed by stringent quality control, ensures that every Shure communications microphone will give you reliable performance. And will go on doing so even under conditions where other microphones would pack up. Always use Shure, the microphones that never fail to get the message through.

Communications

Controlled magnetic hand microphone providing a clear, crisp. highly intelligible voice response. Rugged and dependable, ideal for outdoor-indoor P.A., and communications.
Frequency response 200 to $4,000 \mathrm{cps}$ High impedance. High output. Model 414.

Amateur Radio

Provides optimum radio
communications performance from single sideband transmitters as well as AM and FM units. Response cuts of sharply below 300 cps and above $3,000 \mathrm{cps}$, ensuring maximum speech intelligibility and audio punch to cut through noise and interference.

For full details of Shure microphones, SEND IN THIS COUPON TODAY

To : Shure Electronics Ltd., 84 Blackfriars Road, London SE1. Tel: 01-928 3424
I'd like to know more about Shure Microphones for Communications $\square \quad$ Professional Recording \square Amateur Radio $\square \quad$ Professional Entertainers \square

Please send me the facts :
NAME
ADDRESS

SHURE

setting the world's standard in sound

There are a couple of things you should know about the Welbrook All Silicon Stereo Amplifier

DISTORTION 0.1% at all output levels

PRICE
 £42. 0. 0d.

A new and unique method of equalising impedances in the output stage enables only Welbrook to offer such true high fidelity reproduction at such low cost.
This technical breakthrough brings you the Welbrook W20 Stereo Amplifier, with no distortion rise at any level, for only $£ 42$. o. od. This is a truly remarkable bargain among high quality stereo amplifiers, using Class B operation.

Performance:

Power Output

24 watts R.M.S. (12 watts per channel) into 4 ohms load 20 watts R.M.S. (10 watts per channel) into 8 ohms load. 14 watts R.M.S. (7 watts per channel) into 15 ohms load. Total Harmonic Distortion:
Typically 0.1% for 10 watts per channel into 8 ohms load at I kHz with no increase at low levels.
Hum and Noise:
With volume control at minimum- 80 dB . With volume control at maximum- 55 dB .
Frequency Response:

- 1 dB at 30 Hz and 15 kHz .

Inputs: Pickup:
R.I.A.A. characteristic, sensitivity adjustable up to 3 mV to suit crystal, ceramic or magnetic cartridges.
Tuner:
Flat characteristic-sensitivity 100 mV -input impedance 100 k ohms.
Tape:
Flat characteristic-sensitivity 100 mV -input
impedance 100 k ohms.
Outputs:
Loudspeaker outputs to suit 4, 8 and 15 ohms. Tape output for recording- 200 mV for rated input sensitivities-minimum external impedance 10 k ohms.
Tone Controls: Bass:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 30 Hz
Treble:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 15 kHz
Balance Control:
Facility to reduce output from either channel continuously
from maximum output to zero.
Dimensions:
14 $4^{\frac{3}{4} \prime \prime}$ wide $\times 9^{\prime \prime}$ deep $\times 4^{\prime \prime}$ high (cabinet)
Price:
Recommended retail price; £42. o. od. including cabinet.

For full details of the Welbrook Stereo Amplifier post the coupon to:
WELBROOK ENGINEERING \& ELECTRONICS LIMITED,
BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT

EAGLE INTERCOMS

There's a vast market here - in the office, the factory, the workshop, the home, the nursery. Almost everyone in the country could use an intercom - if the trade would just push them a little bit! And here's the reliable range you can push! From an inexpensive set a young couple can buy for baby-listening to a full-scale 12 -station model You'll get quick delivery, too - and you'll need it, if you display the Eagle Intercoms with their powerful colour showcards! And another attractive thing about the range of Eagle Products is the rate at which fast-selling new items are added! See our new catalogue, which proves the point! Send the coupon to the Sole

Distributors of Eagle Products -

B. Adler and Sons (Radio) Limited, Coptic Street,

 London, W.C.1 or quicker still, dial 01-636 9606,

SIMPLY SUPERB! the new brenell... MODEL ST STEREO

Probably the most important new recorder of the year!

The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics : shelf-mounting cabinet ; simplified controls
Sound quality is even better than ever-as good as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenelltoday.
Only the price is less than you may expect . . . $£ 145$ recommended. You pay no import duties . . . no high selling costs . . . only for a top-quality recorder, well made. It's a fine formula !

- Mono or stereo operation

- 3 tape speeds

- Choice of 2 or 4-track models
- 2 recording level meters
- Full input/outputend control facilities
A range of Brenell mono and stereo recorders is available, logether with Brenell deck and tape-link

Plessey CT80 at the BBC

The Plessey CT80 Cartridge Recorders shown here are installed in the World Service Continuity Studio of the B.B.C. External Services Studio Centre at Bush House, London. From this centre broadcasts originate to all English speaking regions of the world including South East Asia and Australia. The studios are in operation twenty-four hours a day and the CT80 units are used for both programme material and standby announcements.
Having met the specification requirements of the B.B.C. the CT80 Recorder is now demonstrating its reliability in operational service.

Sales and Service - Rola Recording Products Department Garrard Engineering Limited Newcastle Street Swindon Wiltshire Telephone Swindon 5381 Telex 44271 or the manufacturer Plessey Electronics Pty Limited Equipment Unit 91 Murphy Street Richmond Australia 3121 Telex 30383 Cables ROLA Melbourne

Nicrophonenes for every purpose

The GC/1 Cardioid
For stage and church work, P.A. use, lecture halls etc., where acoustic feedback is a serious problem.

The GR/1 and GR/2 Ribbon
Ideal for studio and similar uses, when a high standard of fidelity is essential. Easily replaceable ribbon assembly.

Other models and a full range of stands, reflectors, windshields and accessories available

All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage.
Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance

Grampian sound equipment Integrity thot you heor

SOLDERING IRONS?

Whatever your particular application we are almost certain to have just the tool for the job.

ADAMIN-featherweight instruments with the slip-on bits and the big performance.

LITESOLD-the best-selling seven-model range of top-quality 'conventional' irons.

THERMOSTATIC CONTROL?

The new LITESTAT instruments are surely the most advanced available-at not so advanced prices.

YOU ought to get the whole story. Ask for catalogues L.5. Free.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CRS 2LL Telephone 01-688 8589 and 4559

This little fellow gets all the tough assignments

Redcap Capacitors are ready for any assignment. As part of the Monobloc Ceramicon range, they can pack 10 to 100 times the capacitance/volume ratio of conventional components. They tolerate temperatures from $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. They cover a broad range of values from 10pF to $470,000 \mathrm{pF}$ (up to $2,200 \mathrm{pF}$ in high stability NPO, with the remainder of the range in

Hi-K Dielectric), at voltage ratings of 50 or 100 Volts d.c.
Redcaps are now made in Britain. The technique is the fusion of Thin Ceramic Films and Platinum Electrodes. The result is an inherently stable dielectric, and volumetric efficiencies as high as $380 \mu \mathrm{~F}$ per cubic inch.
Finished in Jetseal Phenolic Insulating coating, with weldable solder-coated
copperclad steel leads, Redcaps are
 equipped to perform their tasks with complete reliability.
Send for details to :-
ERIE ELECTRONICS LTD,
Gt. Yarmouth, Norfolk. Telephone : 04934911
Telex: 97421

JAGK DAVIS (RELAYS) LTD.
 9/10, Mallow Street, London, E.C. 1 Telephone: 01-253 3661/2

Accurate and direct measurement of speed without coupling to moving parts
 FRAHM

 ResonantReedTACHOMETERS

for hand use or permanent mounting.
ages and combinations of ranges from 900 to 100,000 r.p.m. escriptive literature on FRAHM Tachometers and Frequency ?ters is freely available from the Sole U:K. distributors:

DERS METER SERVICE

ANu RS ELECTRONICS LTO. 48/56.BAYHAM PLACE, BAYHAM STREET LON ON NWI TEL: 01-387 9092.

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape High Pass filters; Teleprinter, Mibsens; Polarised and specia-
 and Ribbons; Polarised and specials
lised sclays and Bases; 'Terminals lised relays and Bases; Terminals phone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switch board Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equme Miscellaneous Accessories, Teleprinter and Teletype Spares.
W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

Measure V 's from 1 Hz to 3 MHz

VOLTMETER RANGES
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} .500 \mathrm{~V}$ f.s.d Acc. $=1 \%=1 \% \mathrm{fos.d}=1 \mu \mathrm{~V}$ at 1 kHz db RANGES
$-100 \mathrm{~dB},-90 \mathrm{~dB},-80 \mathrm{~dB} \ldots+50 \mathrm{~dB}$ Scale - 20dB/+6dB rel. to $1 \mathrm{~mW} / 600 \Omega$. FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz .
0.3 dB from 4 Hz to 1 MHz

Type TM3B can be set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUT IMPEDANCE
Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$.
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$ AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges into $200 \mathrm{k} \Omega$ and 50 pF without loss. SIZES \& WEIGHTS
TM 3 A; $5^{\prime \prime} 7^{\circ} \times 5^{\prime \prime} .51 \mathrm{~b} .3 \frac{1}{*}^{\circ}$ scale TM3B; $7^{\prime \prime} \times 10^{\circ} \times 6^{\circ} .81 \mathrm{~b} .5^{\prime \prime}$ mirror scale

PORTABLE INSTRUMENTS

Long battery life and large overload ratings are leading features of these solid state instruments. Mains power supply units and leather carrying cases are optional extras.

Measure $\mu \mathrm{V}$'s from 1 Hz to 450 MHz .

h.F VOLTAGE RANGES
$1 \mathrm{mV} .3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d
Square law scales. Acc. $+4 \%$ of
reading $\pm 1 \%$ of f.s.d. at 30 MHz
H.F. dB RANGES
$-50 \mathrm{~dB}, \rightarrow 40 \mathrm{~dB},-30 \mathrm{~dB} . .20 \mathrm{~dB}$.
Scale - $10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. $101 \mathrm{~mW} / 50 \Omega$.
H.F. RESPONSE
0.7 dB from $1 . \mathrm{MHz}$ to 50 MHz .

3 dB from 300 kHz to 400 MHz $\pm 6 \mathrm{~dB}$ from 400 MHz to 450 MHz
L.F. RANGES

As TM3 except for the omission
of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ ranges.
AMPLIFIER OUTPUT
As TM3 on L.F
Square wave at 20 Hz on H.F. with amplitude proportional to square of input. SIZES \& WEIGHTS
TM6A: $5^{\prime \prime} \times 7^{\text {" }} \times 5^{\text {n }} .6 \mathrm{lb} .3 \mathrm{t}^{\prime \prime}$ scale
TM6B: $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime} .91 \mathrm{~b} .5^{\prime \prime}$ mirror scale

Measure D.C. \&V's, pA's \& I's

VOLTAGE RANGES
$3 \mu \mathrm{~V}, 1 \mathrm{C} \mathrm{\mu V} .30 \mu \mathrm{~V}$
1 kV . Acc. $1 \% \div 1 \%$
f.s.d. $\pm 0.1 \mu \mathrm{~V}, \mathrm{LZ}$ \& CZ scales.

Noise $<0.5 \mu \vee p-p$ on $3 \mu \vee$ range
Drift $<0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \&<0.7 \mu \mathrm{~V} / \mathrm{day}$
Inputres. > $1 \mathrm{M} \Omega / \mu \mathrm{V}$ up to 10 mV , $>10 \mathrm{kM} \Omega$ on 30 mV to $1 \mathrm{~V}, 100 \mathrm{M} \Omega$ above 1 V .
CURRENT RANGES
3pA. 10pA, 30pA… 1 mA (1A for TM9BP) $\mathrm{Acc}+2 \% \pm 1 \%$ f.s.d. $=0.3 \mathrm{pA} . L Z \& C Z$ scales. Noise $<0.7 p A p-p$ on $3 p A$. Drift $<1 \rho A /$ ${ }^{\circ} \mathrm{C} \&<1 \rho A /$ day. Input res. $1 M \Omega$ up to 1 nA . $100 \mathrm{k} \Omega$ on 3 nA to $9 \mu \mathrm{~A}, 100 \Omega$ on $3 \mu \mathrm{~A}$ to 1 mA , 0.12Ω on 3 mA to 1 A
RESISTANCE RANGES
$3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $=1 \%$, $\pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$. Test voltage 3 mV at l.s.d. on Ω ranges. Test currents $1 \mu A$ \& $1 n A$ on $k \Omega \& M \Omega$.
RECORDER OUTPUT
1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges
SIZES \& WEIGHTS
TM9A as TM3A. TM9B \& BP as TM3B

type	type	type
TM9A	TM9B	TM98
975	-889	-293

Leaflets covering our full range of portable instruments are available on request to:

Mechanical and Crystal filters

Filters, Mechanical and Crystal for communications and broadcast applications are available in a wide series of centre frequencies and passbands.

For further information contact IMPECTRON LTD., 23-31, King Street, London, W. 3. Telephone: 01-992 5388.

From the Burgess All-electric Workshop : a light, balanced solder gun with a range of screw-in tips. The tips-and only the tips-heat up in 7 short seconds, Antithermal casing keeps the rest of
the gun cool. Note the slim barrel-it reaches right down into confined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work! The price of this tough, modern instrument ? Just $£ 4126$ complete with two tips, a $6^{\prime \prime}$ extension barrel, a double-ended probe and solder. FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our informationpacked catalogue.

[^0]
WORLD FAMOUS दuctichicivi VARIABLE VOLTAGE CONTROLS

VARIABLE TRANSFORMERS

* Output 0.260V
* Input 230V 50/60CPS
* Shrouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.
f5. U.

CONSTANT VOLTAGE TRANSFORMER.
Maintain spot-on test gear readings with Automatic Mains stabilizer.
Specification

* Output 240 V
- Accuracy \pm 1\%
- Input 190-260V
- Capacity 250 watts
- Corrected wave
£12.10.0

20 AMP LT SUPPLY UNIT

- Inpui 240 V

Output 20 amps at 24 V and 12 V fully adjusteble - Size $16^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime \prime}$ high - Weigh 50 lbs .
f35.0.0

- Output 25-240V - Input 240V 50 CPS - 5 amp \& 10 amp models - Completely sealed

5 amp model
£8.7.6
10 amp model
f13.15.0

OMRON PROCESS TIMERS

SYS TIMER

£11
dependent
STP TIMER
SYNCHRDNDUS MDTOR \& CLUTCH Matchbox size frontal area Automatic re.set

* PLUG-IN DCTAL bASE
- instantaneous AND TIMED OUT 2 AMP CDNTACTS
* RANGES: 0.10 SECSTO 0.36 MINS

TEMPERATURE CONTROLLER TYPE THP

- thermistor operated
- OCTAL BASE PLUG IN
* COMPACT

Temperature ranges up to $280^{\circ} \mathrm{c}$
Output conlacts 4 amp
Repeat Acturacy 3\% full scale
Complete with Thermistor
Approximately
£21 \qquad
dependent
on quantity.

You'reon the right trackwith Goldring 800 magnetic cartridges

> Goldring 8oo magnetic cartridges track unerringly.
> Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.
> Hear it for yourself. You'll know you're on the right track.

Goldring $800 / \mathbf{H} \ldots$ the $800 / \mathrm{H}$ is designed for inexpensive changers to track between $2 \frac{1}{2}-3 \frac{1}{2}$ grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 \ldots the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict.£13.0.0taxpaid.

Goldring $800 \mathrm{E} . .$. is designed for transcription arms and a micro-elliptical diamond is fitted to a finer cantilever, end damped against natural tube resonance $£ 18.17 .1$ tax paid. Goldring 800 Super E . . . the 800

Super E is for those to whom perfection is barely good enough. Extraordinarily low mechanical impedanceforsuperb tracking capabilities. Each cartridge is supplied with its individual curve and calibration certificate. £26.0.0 tax paid.

Come to the

USE OF MICROELECTRONICS Conference

at the Royal Garden Hotel, Kensington High St., W. 8 on April 28-29, 1970

This is the fourth practical conference on microelectronics in equipment to be sponsored by the journals "Microelectronics" and "Electronic Equipment News". The main Conference Theme will be "The Interface between the Integrated Circuit Manufacturers and their Customers"'. Emphasis will be on how to make use of ICs once the customer has them in his hand. The growing interest in, and the increased use of integrated circuits in all sections of industry are factors which make this a subject of considerable importance to all manufacturers and users.
The Conference will consist of five "workshop sessions" at which carefully selected speakers will give presentations for open discussion amongst all delegates.
There will be accompanying displays of appropriate equipment.
Conference Programmes with full details and application forms are available free of charge from the Organizers,
Business Conferences \& Exhibitions Ltd., Mercury House, Waterloo Road, London, S.E.1.

[^1]Please send me without obligation
copies of the programme of the "Use of Microelectronics" Conference.

A Technical Knockout

Titles are hard to win at Morganite. But we have a Champion in the Type 81E Cermet Trimming Potentiometer.
After several rounds with our Quality Control personnel. the Champion emerged unscathed. Unfortunately.
the other contender could not of electrical tests. stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft . matchstick) but he suffered a technical K.O. during the final rounds

The Champion took them in his stride and now challenges all comers.
If you have an application for a 0.5 w single turn trimming potentiometer, (Bantam Weight) back a proven title holder - it pays !

MORGANITE RESISTORS LIMITED

Tronsoromers, Chotes

Saturable Reciciors

Vollmobiles-volitage regulalors

Recififer Sels

Transformers

Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. The se techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6\% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equipment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

Specific enquiries are invited

The Big Little Integrals That Can Make Or Break Your Product.

SY173L Single speed (2000 rpm) For record players.
DMF54R-02 Single speed (2400 rpm) For tape racorders.
RK201R Single speed (2400 rpm) For car players.
BF110R Single speed (2000 rpm) With electrical governor motor. For tape recorders.
BF200R Single speed (2200 rpm) For car recorders \& players.
ZF200R Variable speed (such as 1100,2200 and 2800 rpm). With brushless \& transistor motors. For de luxe record players \& electronic calculators.
VM250B Single speed (3600 rpm) For auto tuners.
Specification for Sankyo micro motors

IYPE	Ommensors		$\begin{aligned} & \text { Rand } \\ & \text { Vollye } \\ & (V) \end{aligned}$	Pane of Wolloge (V)	$\begin{aligned} & \text { Ratud } \\ & \text { Jorque } \\ & \text { If on I } \end{aligned}$	$\begin{aligned} & \text { Ralod } \\ & \text { Speed } \\ & \text { (Dm) } \end{aligned}$	$\begin{aligned} & \text { lood } \\ & \text { Curment } \\ & (\mathrm{ma}) \end{aligned}$	Starting forcue ($\mathrm{g}-\mathrm{cm}$)	Lite (Hr)	$\begin{aligned} & \text { Direction } \\ & \text { of } \\ & \text { Rewoluton } \end{aligned}$
	(m/m)	$\begin{aligned} & \text { Lungth } \\ & (\mathrm{m} / \mathrm{m}) \end{aligned}$								
8Virsi	40	32.4	6	$45 \sim 6$	3	2000	80	35	500	telt
DMFEAM. 02	38	4.8	6	4.5 ~ 6	9	2400	140	30	600	ment
*K2016	479	48	132	$10 \sim 16$	30	2400	210	100	1000	Right
EFIOR	38	30	45	$3.5-5.7$	8	2000	160 *	30	1500	Righ
BF200	38	3.1	132	15.5-19-16	15	2200	130	30	1500	Rigen
2F300.	46	50	9	$6 \sim 9$	20	2200	300	45	3000	Leth Reght
UPSEOR	20	4.5	15	$\begin{aligned} & 4 \sim 6 \\ & 4.5 \sim 6 \end{aligned}$	14	$\begin{aligned} & 3700 \\ & 5000 \end{aligned}$	160	60	30	Righ
Vm2808	25	36.5	7	$6.5 \sim 7.5$	04	3600	45	25	500	Leth Rugh

SSankyo

Sankyo (Europo) Export und Import G.m.b.H.: 4 Düsseldort. BahnstraBe 45-47. W. Germany. Tel: 325652/3 Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF
Sankyo Solki Mfg. Con Lid.: 17-2, Shinbashl 1-chome. Minatoku. Tokyo 105. Japan. Tel : Tokyo 591-8371
Cables: SANYORGEL TOKYO

American Sankyo Corp. Rm, 801-3, 95
York, N. Y. 10016.U.S.A. Tel: LE-2-8020
Full details of these and other instruments from the Sole U.K. and Export distributors.

> W. GREENWOOD ELECTRONIC LTD.

> 21, GERMAIN STREET, CHESHAM, BUCKS
> TELEPHONE: CHESHAM 4808/9.

Save yourself time by talking about your applications (PCM, TV, pulse, HF, etc) to our specialist engineers. If we can't meet your requirements from our own extensive range, then we'll tell you who can.
Call Chertsey 2636 -
and ask for Barrie Newman.

The scope specialists

World Wide sales a Service

DYNAMCO

Dynamco Limited Hanworth tane Chertsey Surrey England

WW-053 FOR FURTHER DETAILS

Looking for one

like

 this?4 mm ., tubular. wire ended, length 11.5 mm Just one of the many Vitality Instrument and Indicator Lamps, made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in Vitality Catalogue 69 maywellbe

* Many a product owes its success to the intelligent addition of an indicator light

VITALITY BULBS

With a detected system flatness within $\pm 0.05 \mathrm{~dB}$ over the full video range, and a battery of features to aid precise measurement, the new TF 2361 provides a standard of accuracy not usually associated with general purpose sweep generators.
This powerful new instrument is designed for use with video or v.h.f. sweeper plug-ins to form accurate and comprehensive measurement systems - particularly in the TV field.
A wide range of sweep speeds from 0.01 Hz to 100 Hz make it ideal for use with X-Y plotters, display units or oscilloscopes.
The TF 2361 main unit, which contains common power supplies and circuitry for the plug-ins, features readily removable chassis units for straightforward servicing. Altogether an extremely comprehensive and well specified sweep generator

VIDEO flatness to within $\pm 0.05 \mathrm{~dB}$ over the full band make it ideal for wide range, accurato frequency response checks on roceivers, amplifiers, filters and attenuators.

* Uniquo alternate-sweeps-at different-levels feature com. plements the advantages of the flat output in making accurate frequency response checks.
* Unique TV lock facility locks sweep to a TV sync and blanking waveform to provide a TV video sweep system.
Price $£ 960$ f.o.b.U.K.
V.H.F. 1 MHz to 300 MHz * Comprehensive internal and external markers can be added to the detected output or can be used separately: positive or negative pulse or birdie markers can be sclected.
* R.F. attonuator may be used separately.
* Comprehensive range of detectors and probes available. Price £1128 f.o.b.U.K.

SPRAGUE
Sprague low cost ATB features all welded connections, ultra low leakage, and stable life under severe conditions.

100 UP PRICES

$250 \mu \mathrm{~F}$	(a)	12v	10d
$50 \mu \mathrm{~F}$	(a)	50 v	$7 \frac{1}{2} \mathrm{~d}$
$10 \mu \mathrm{~F}$	(a)	100 v	$7 \frac{1}{2} \mathrm{~d}$
$1000 \mu \mathrm{~F}$	(a)	6 v	1/4d
$500 \mu \mathrm{~F}$	(a)	15 v	1/1d

More data from:
WIE凸 comonents ted
Dept. B, 5 Loverock Road, Reading, Berks. Tel. : Reading 580616-9 Telex 84529
Ministry of Technology approved distributor
WW-056 FOR FURTIIFR DETAILS

trio
 STANDARD BENDING CLAMP

An easily adjusted hand tool for the accurate bending of resistor, capacitor, diode leads, etc., for printed circuits. Will bend leads to within $\frac{1}{16}$ " of ends of components and
 up to $3 \frac{1}{4}$ " centres.
Infinitely adjustable between $0^{\prime \prime}$ and $1 \frac{3^{\prime \prime}}{4}$ to suit component body length. All type lead diameters accommodated. Overall Dimensions $7_{8}^{7 \prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$.
Price: 57/6d.
TRIO INSTRUMENTS LTD., BURNHAM ROAD. DARTFORD, KENT.

Telephone: Farningham 2082.

RESEARCH COMMUNICATIONS

FET Preamplifiers

Signal frequency: As specified in the range 1 to 700 MHz . Bandwidth: Up to 15% of signal frequency @ -3 dB . Gain: 55 dB . @ 10 MHz .40 dB .@ 70 MHz 35 dB.@150 MHz.
Gain control range: 20 dB . manual or external AGC.
Noise Factor: $\quad 1.5 \mathrm{~dB}$.@ 150 MHz .2 .5 dB .@ 450 MHz .
Impedance: $\quad 52$ or 75 ohms or as specified.
Connectors: BNC, N, SO239, L604, or as specified
Power: 12v. @ 12 ma . DC. Negative earth.
Size:
Weight:
Masthead unit $5^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$.
Standard unit $4 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 14^{\prime \prime}$.
10 oz.
I to 300 MHz ., $\mathbf{6 2 0}$. 300 to 700 MHz ., $\mathbf{6 3 0}$.
FET Crystal Controlled Frequency Converters
Input frequency: As specified in the range 1 to 700 MHz .
Output frequency: As specified in the range 100 MHz . to 700 MHz .
Price:
I to $300 \mathrm{MHz}, 630 . \quad 300$ to 700 MHz ., $\mathbf{6 5 0}$. Other details as preamplifier.

Receivers

I to 300 MHz . Crystal-controlled. AM or FM.
Up to 5 channels within 15% or centre signal frequency.
Output: I watt into 8 ohms or as specified.
Power: 12 v @ 35 ma DC. Negative earth.
Size: $\quad 4 \frac{2^{\prime}}{} \times 2 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{1 "}^{\prime \prime}$
Welght: $120 z$.
Price: $\quad 680$.
$\stackrel{\text { ¢80. }}{V} \underset{\text { Varlcap. }}{ }$
RESEARCH COMMUNICATIONS
PEEL HOUSE, PORTERS LANE, OSPRINGE, FAVERSHAM, KENT
Telephone: Faversham 2064 Mr. P. H. Strudwick for further information WW-057 FOR FURTHER DETAILS

M. R. SUPPLIES (London) LTD.,
(Established 1935)

Unlvernally recognised as suppliers of UP.TO-DATE, MATERIAL, which does the Job properly. Instant delivery. Bstisfaction assured. Prices Dett.
ROOM THERMOSTATS. Danfonn wall-mounted Thermontats, 40 deg. F.- 80 deg. F., 380 v. A.C., t amps. ; 240 v. A.C.. 6 amps. Our nett price $£ 1 / 12 / 8$ (des. $2 / \cdot$).
MINIATURE RUNNING TIME METERS (Mangamo). Wo have great demands for thif remarkable unit asd now can supply mamediately trom suck, $200 / 280 \mathrm{v}$. 50 c . synchropous. Count ing up to
 Induytrial and domentic applicat
eany to frintalif. $63 /$ - (des. 1/b).
SYNCHRONOUS TIME SWITCHES. (Another one of our popular specialities) 200/2t0 v. Boc. for

ELECTRIC PAFS (Papat), for extracting or blowing. The mant exceptional offer we have yet majie. $200 / 250$ v. A.C. Induction motor-ailent running. 2,800 r.p.m. duty 100 C.F.M. Only

 open type 8.P. Unit ench stde and enclosed gearbox. 8uitable for dispiay work and many todustriaj usea. Onily 75/- (des. s/f).
MINIATURE COOLING FANS. 200/250 v. A.C. With open type Induction motor (no interference), Overall $4 i n . \times 3$ in. $\times 24 \mathrm{it}$. Fitted 6 -damied metal impelier. Ideal for projection iamp cooling, hight duty extrachors, ecc., sthl only $31 / 6$ (des. $5 / \%$.
AIR BLOWERS. Highly efficient unita ntted induction whally encomed motor $230 / 260 \mathrm{v}, 50 \mathrm{c}$.

 1.5 WG, $11 \times 8 \times$ inn., outlet 3in. sq., $£ 13 / 17 / 8$ (des. U.K. $7 / 6$).

SYNCERONOUS ELECTRIC CLOCK MOVEMENTS (a mentloned and recommended in many national Journaia). $200 / 250 \mathrm{w} .50 \mathrm{c}$. Belf-starting. Fitted spindles for hours, minutes and central wreep second hands. Centrai one-hole fxilng. Dia. 21 ln . Depth behlnd diai on oly 1 lo . With back duat cover, $38 / 6$ (des. $2 /$-). Set of three braks hapds in good plain style. For $3 / 7 \mathrm{in}$. dia. 2/6 syncerowous TIM
SYNCBRONOUS TIMER MOTORS (Sangamo). $200 / 250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$. Selifatart ing in. dia. $\times 1 \mathrm{in}$.
 (des. 2/-).
SMITHS TIMER MOTORS, Bynchronous, self-gtarting 200/250 polta, 1 ph., 50 C. Clockwles. +E.p.m. only. Only 25/- (des. 2/-).
Miniature D.c. motors. $6 / 12$ volts D.C. Leal model makers. 4.000/9,000 r.p.m. no load. 1f it. x if in. dimmeter. Flange fixing. Oily $5 /=$ (deb. $1 / 6$).
EXTRACTOR FANS. Ring mounted all metal conatriction. T/E induction motor, sllent opera-

max. dia., 500 C'M. $£ 6 / 16 / 0$ (des, $6 / \mathrm{m}$).
Immediate delivery of stuart Ceotrifual Pumpa, includlag atainlesa steel (most modela). OFFICIAL STOCXIST: "PARVALUX" Electrie Motors (List G.m. 18日)
M. R. SUPPLIES (LONOON) LTT., 68 New Oxiord Street, London, W.C. 1 (Telephone: 01-636 2958)

IR - The Current Slicers - let you 1ave your cake and eat it.

 You get guaranteed jevices ex-stock zt list prices from any one of us.D. - V. Group Ltd

126Hamilton Road, West Norwood, London SE27
Teleohone: 01-670 6163. Telax: 26211
Eastern Aero Electrical Servicss Lty
Bu Iding 44, London Airport North, Hounslow Midclesex. Telephone: 01-759 1314

The Electrical Equipment Co. (V.I.) Lid Ke v n touse, 51-53 A delaice SIreet Beffast. N. Ireland BT\& 3 FN
Telephone: Belfast 26222 . Telex: $7 \neq 100$
Electronic Component Supplizs (VJiodsor) Ltd Thames Avenue, Windsor, Bert.shire
Te ephone: Windsor E9311/30 T.elex: 84573
Faunell Electronic Ccmpanents _tc 81 <irkstall Road, Leecs, Yorksh re LS3 1HR Te ephone: Leeds 3511:. Telex: 155147

Harmsinorth, Townley \& Co
Well ngton Road, Todmordシn, Larcashire Te ephone: Todmorden 2601
I.T.T. Electronic Sertices

Ed nburgh Way, Harlo A, Esser
Te ephone: 027-96 25\%77. Telez 87136

Lugter \& Co. Ltd
$209-22$ Tottenham Court Road, London W1
Telephoาe: 01-636 3261. Telex: 25618
Nelfronic Ltd
9 A دэiar Way, Dublin 6, Eire
Teleprofe: Dublin 685086
S.A.5.C.O. Ltd

Seta ck Road, Crawley, Susse)
Telepho 7e: Crawley 28700. Telex: 87131

S.A.S.C.O. Scotland

Factery 1EB, Carbrain Industrial Estate
Cumber auld, Glasgow, Scotland
Telashona: Cumbernauld 25601. Telex: 778104
S. D. 3. (Portsmouth) Ltd

Hi sea Irdustrial Estate, Portsmouth, Hampshire
Tele=hone: Portsmouth 62332\%3 and 62180
TEEx: 86114
Townsend-Coates Ltd
Coleman Road, Leicaster Leicestershire
Telephone: Leicester 68561
Telex: 134321

IER the current slicers

to YOUR

requirements

ERNEST TURNER

ELECTRICAL INSTRUMENTS LTD.
TOTTERIDGE AVENUE
HIGH WYCOMBE
BUCKS. ENGLAND.
Telephone 30931/4

MODEL 8 MK. IL

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificate of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-059 FOR FURTHER DETAILS

F.A.L. 'PHASE LOO
 Public Address Amplifier

 instrumental groups and

Recommended Retail price
\star High Sensitivity
$\star 70$ Watts RMS Output
\star Output matching for speakers from 3-30 ohms

* 4 separately controlled inputs plus master \star Separate Bass and Treble Controls * Frequency Response 20 c.p.s. to 30 Kcs . AVAILABLE FROM YOUR LOCAL DEALER Wholesale and Retail enquiries to Manufacturers

FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13

blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, including feet and screws.

Contil cases are also avallable with aluminium panels and Contilcote, which is appliedafterdrilling and cutting.

CASE PRICES (All subplied with protective coated steel panels)

Nos. denote size in inches

755

867/975

1277 white or black panel 1277 unpainted
16127
191010 191010D

1	5	10	25	50	100	$P \& P$
$43 / 6$	$41 / 6$	$40 / 6$	$39 / 6$	$38 / 6$	$36 /-$	$6 /-$
$45 / 6$	$44 /-$	$43 / 6$	$41 / 6$	$40 / 6$	$38 / 6$	$6 /-$
$49 / 6$	$47 /-$	$46 /-$	$45 /-$	$43 / 6$	$43 /-$	$8 /-$
$40 / 6$	$39 / 6$	$38 / 6$	$36 /-$	$35 /-$	$32 / 6$	$8 /-$
$96 / 6$	$94 / 6$	$92 / 6$	$91 / 6$	$89 / 6$	$88 /-$	$9 / 6$
$130 / 6$	$127 / 6$	$125 /-$	$123 /-$	$122 /-$	$121 /-$	$10 / 6$
$185 / 6$	$182 / 6$	$180 /-$	$178 /-$	$176 /-$	$173 / 6$	$18 /-$

Your third hand

The ONTOS UNIVERSAL VICE is a new type of mulei-purpose, mulsi-position lighe engineering vice and stand, fully adjustable for any angle and location in any desired plane. Applications are virtually limitless within its size capaciey: any desired plane. Applicasions are birtually hosting, building up modules, as a i.e. holding P.C. boards for assembly or cesting, bulding in the chemical
micrometer or gauge stand, as a lighe general purpose vice, in the micrometer or gauge stand, as a lighe general purpose vice, in a he chemical
laboratory, or in fact for all those occaslons when you could use a third hand! laboratory, or in fact for all those occaslons when you could use a third hand version of the Ontos rice with ewo sets of jaws, each capable of rotation through 360 deg. of every plane independently of each other. Positive locking enables any such secting to be maintained for repetition work. Ideal for copying P.C. boards, assembly, soldering, bonding, welding, laboratory testing, etc. ONTOS: 67/6 plus P\&P 4/6.
ONTOS TWIN $\& 5180$ plus P\&P 4/6
 \section*{\section*{'Brightilife'
 \section*{\section*{'Brightilife'

 }

 NEONS

 NEONS

 25,000 hour average life. PC type f° dia-}

 25,000 hour average life. PC type f° dia-} meter, $6^{\prime \prime}$ leads with resistor inside. Nine different caps available, $160-260 \mathrm{~V}, 10$ at $2 / 10$ each, 100 at $2 / 6$ each, 1,000 as $2 / 2$ each, 10,000 as $2 /-$ each. Also available with 30° leads; 110 volt resistor values. PP sype fo diameter also supplied with 30° leads and 110 volt variancs. 10 at $2 / 10$ each, 100 at $2 / 6$ each, 1,000 at $2 / 2$ each, 10,000 at $2 /$ each. Neon/resistor assemblies, 100 at 9 d . each, 10,000 at 8 d . each. Neons only, 100 at 9 d . each, 10,000 at 6 d . each. Neons driven by neon oscillator for 6 so $\mathbf{2 4}$ vole inpur down to 50 mW input. Neons driven by transistors with or without alphanumerlc caps.
MINIA. TURE NEONS

The smallest yer, type "Q". Overall diameter音", body . $\mathbf{T}^{\prime \prime}$, resistor mounted externally. medium intensicy. Minimum quantity 10 at $3 / 10$ each, 100 at $3 / 4$ each, 500 at $3 / 2$ each.

MOD.

ideal for development
 cheaper for production

PVC COATED MATERIALS. No, outside paint to be SCratched. PVC easv to clean, surface is scuff resistant. easy cutting with rigidity PVC/STEEL FOR SIDES. TOP \& BOTTOM glves rigidity. low cost. ease of assembly. 3 HEIGHTS OF CASE. 4 WIDTHS, 2 DEPTHS make 24 cases with screws on top and 24 cases with screws on side, that's 48 different cases. LOW COST. Prices include chassis MODERN DESIGN. Metal work on from and hack and chassls is made easier by aluminium with PVC cladding. PVC/steel on sides and bottom for strength. GOOD DELIVERY. OH in
shalf range of all PV shalf range

NOTE THE LOW COST

WEST HYDEDEVELOPMENTS LTD. 30 HIGH STREET NORTHWOOD MIDDX.
Telephone: Northwood 24941/26732

PLEASE
NOTE
All products ex-
stock for normal
quantlifis. Re-
turn of post ser-
vise. Minimum
order Cl. Fully
detalled leaflets
avallable.

WW-061 FOR FURTHER DETALLS

NEW LABORATORY ATTENUATOR UNIT

Designed particularly for bench use in the laboratory, this new Hatfield LE10 R.F. Attenuator has low insertion loss, good V.S.W.R. and is arranged to provide $0-121 \mathrm{~dB}$ attenuation in 1 dB steps, frequency range dc to 500 MHz . An alternative version is available covering $0-12.1 \mathrm{~dB}$ in 0.1 dB steps. The Hatfield range of Attenuators covers a wide variety of applications and includes fixed, switched and variable types.

- Write now for full details of the range and for a copy of the latest edition of the HATFIELD SHORT FORM CATALOGUE.

HATFIELD INSTRUMENTS LTD.,

Dept. WW, Burrington Way, Plymouth, Devon.

HATFIELD BALUN

Telephone: Plymouth (0752) 72773/5. Telegrams: Sigjen Plymouth. Telex: 45592

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquirjes also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS

 to 8 K.V.A.

 Knapps Lane, Bristol 5. 0272657228

WW-064 FOR FURTHER DETAILS

SPEED CHECK!
 Revs per Minute or anything else per minute-

 P.I. ELECTRONIC TACHOMETERType P.I/L with light probe
Type P.I/M with magnetic probe

* Imposes no load
* No mechanical connection required
* Ideal for inaccessible places
* Lightweight for easy movement External D.C., Battery, and Marine engine speed versions available from-

NECO ELECTRONICS (EUROPE) LTD.,
WALTON RD., EASTERN RD. COSHAM. HANTS CLAPHAM. LONDON. S.W. 4 TEL: 01-622 0141/3 \& $3211 / 5$

то: NOMBREX (1969) LTD Exmouth . Devon. England

Please forward leaflets of your full range to:-
NAME

Please enclose 6d. stamps

Trade and Export enquiries please attach letterhead or Trade Card.
W. 269

NOMBREX

brief specification

- WIOE-RANGE $150 \mathrm{KHz}-350 \mathrm{MHz}$ - FULL FREQUENCY COVERAGE-8 RANGES - ACCURACY 2\%. AVERAGE 0.5\%-1.5\% - R. F. OUTPUT, OR MODULATEO 400 Hz - A. F. SIGNAL AVAILABLE EXTERNALLY - OUTPUT AVERAGE 100 mV OVERALL - CONTINUOUSLY VARIABLE ATTENUATOR - FULLY TRANSISTORISEO CIRCUITRY - PROVISION FOR EXTERNAL SUPPLY
R. F. SIGNAL GENERATOR MODEL 31 £12.10.0
Postage and packing-6s. 6d. extra

Send coupon for full technical leaflets of this and other Nombrex transistorised instruments

peak sound

NEW DESIGN FROM PEAK SOUND

Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$. The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ system as published in Practical Wireless, or the $25+25$ watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now.

Matching F.M. Tuners will be available very shortly
and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

THE SPECIFICATION

Using two Peak Sound PA.12-15's, driven simultaneously at 1 KHz from 240 V . mains supply.
Output per channel: 11 watts into $15 \Omega: 14$ watts into 8Ω. (see spec. guarantee)
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into $15 \Omega-0.1 \%$
Input sensitivities: Mag. PU. 3.5 mV imp. R.I.A.A. equalized into $68 \mathrm{k} \Omega$: Tape. 100 mV linear into $100 \mathrm{~K} \Omega$ Radio. 100 mV linear into $100 \mathrm{~K} \Omega$.
Overioad factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control
Controls: Volume. Treble. Bass. Low-pass Filter Mono/Stereo: On/off; Balance.
Using two PA.25-15 amplifiers, output is then 25 watts into 15 !for 8Ω per channel at 1 KHz
Power bandwidth for -1 dB at 20 watts R.M.S. into 15Ω at less than 0.25% distorion is 20 Hz to 20 KHz

THE MODULES

Using two PA.25-15 modules at
© $11 / 15 /$ - each and PS/68S Stabilized
Power Supply Unit at $£ 13 / 10 /-$, total price for complete system comes to $\mathbf{E 5 8} 15$ 0

Go to your Stockisf. Peak Sound products are already available from dealers in many parts. If your Own local stockist is not yet ready with the Peak with your supplier's name and address and your requirements will be dealt with without delay.

TRADE ENQUIRIES INVITED.

 PEAK SOUND (HARROW) LTO. 32 St. Juda's Road, EnglefieldTo Peak Sound, 32 St. Jude's Rd., Englefield Green, Egham, Surrey.
Details of Englefield systems. please and

Name
Address

Write your stockists name and address in margin below and cut out with coupon if necessar

'PARASTAT'Regd
 Manual Model
 Mk.IIA

The original
 OUST BUG'Ricod.

(Patentivo.ainses) :

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. Complete with 1 oz . New Formula dispenser and instructions. Price 45/-.
Replacements: Pad Covers 2/-each. Brush 12/6. Sponge Cover Pad 1/-. 1 oz . New Fórmula Dispenser $4 / 6$. HUMID MOP. Recommended for Use in conjunction with the Manual Parastat and Preener. Cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the sime of use. Complete with spare sponges and instructions. Price $4 / 6$. Replacements: Set of Sponges $2 / 6$.

PARASTATIK

oisc patisix

Patent No 982599)

Keeps new records like new. Expressiy designed for use with lecords Expressly名 have not had previous antistatic treatment. Complete with instructions. Price 6/9. Replacements: Packet of 4 wicks 2/-.

All obtainable from your

local specialist or direct:

Automatic Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced. resulting in cleaner reproduction. Complete with $\frac{1}{2}$ oz. New Formula Dispenser and instructions. Price 18/9 plus 4/5 P.T Replacements: Nylon Bristle and Plush Pad 1/9. \ddagger oz. New Formula Dispenser $2 / 6$.
A GUIDE TO THE BETTER CARE OF L.P. AND STEREO RECORDS
 Completely evised. 48 pages, fully illustrated. providing all necessary information on Record Care 2/6 Post Free. To CECIL E. WATTS LTO. DARBY HSE, SUNBURY ON THAMES, MIODX. I Please send (Post Free U.K. and Commonwealth)
Disc Preeners @ 6/9.............Fi-Fi Parastats @ $42 / 6$ plus $1 / 3$ P.T. I Dust Bugs@18/9 plus 4/5 P.T.... Manual Parastats @ 45/. I 48 page Booklets @ 2/6 Stylus Cleaners @ $5 /-$ plus $1 / 3$ P.T.
Replacement Parts
I enclose cheque/P.O. value f (Do not send postage stamps) | Name
Address

WELWYN TOOLS

L67-KIT-CN
For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joint Minizture Cutters and Pliers including Tip Cutting Pliers, Prinzed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools ask for Catalogue WW/70 STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW-068 FOR FURTHER DETAILS

OXLEY ${ }^{\circ}$ QUARTZ TRIMMER

The OXLEY trimmer Capacitor with quartz dielectric has been developed to meet the needs of modern professional electronic equipment.
Outstanding features are:-
\star Non-extending adjusting screw

* High Stability
\star Low Losses
\star Fine Adjustment
* No Capacitance reversals
\star High working voltage
Contact our Sales Department for further information
oxley developments company limited, Priory Park, ULVERSTON, Lancs.
Tel. ULVERSTON 262 (Telex 6541

WHHAT A RANGE!

Now you can set up a complete CCTV studio with just

 £3,000-worth of SHIBADEN Equipment And now shisaden have introduced the fist $\begin{aligned} & \text { operated portable camera } \\ & \text { cand }\end{aligned}$ batery fully inclusive price of $\mathbf{£ 6 2 6 . 1 9 . 6}$.Yes it's true. With the outstanding range of SHIBADEN CCTV equipment you can install your own CCTV Studio-all from one source
THE SHIBADEN range includes eight individually designed cameras, four video tape recorders, including one battery model, seven monitors and receivers, plus a full selection of vision mixers.
General Video Systems Ltd. are the main U.K. importers: there are accredited agents through the U.K. and a full technical and after sales service is available.
Write today for a fully detailed brochure and price list of the SHIBADEN range.

HERE'S ONE EXAMPLE OF WHAT YOU CAN GET FOR $\mathbf{f 3 0 0 0}$
Two viewfinder cameras with 5-1 200 m lenses. One caption camera (1 in , lens) Three preview monitors 9 in: one transmission monitor 16 in. Mixer and sync generator. A complete vision
system for
Optional extras: SV700 VTR
£2238
¢ 398
6 CH sound mixer
Add tripods and cables and you have a complete
studio set up for a little over $£ 3000$
general video SYSTEMS LTD.
Main Distributors of SHIBADEN Equipment
61-63 Watford Wav. Hendon. London'NW4. 01-202 8056

J E S AUDIO INSTRUMENTATION

Illustrated the Si 452 Distortion Measuring Unit - low cost distortion measurement down to .01\% £25.0.0

Si451
$\mathbf{£ 3 0 . 0 . 0}$
Comprehensive Millivoltmeter
350μ Volts
20 ranges

Si453
£35.0.0
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE.
WW- 071 FOR FURTHER DETALS

(1)
 LONG-LIFE BITS CUT COSTS

Chisel

Screwdriver

Conical

These new bits are electrolytically iron-coated over their whole length. giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.

Now available in the shapes illustrated for all seven LITESOLD models (aiso fit similar $\frac{1^{\prime \prime}}{}{ }^{\prime \prime} \cdot \frac{3^{\prime \prime}}{\frac{\prime}{6}}$ and $\frac{1}{4}^{\prime \prime}$ bit types).

Send for further details:-

LIGHT SOLDERING DEVELOPMENTS LTD.,

28 Sydenham Road. Croydon CR9 2LL
Telephone: 01-688 8589 \& 4559

Plug-in potential

The 43 Series of
oscilloscopes offer both wide bandwidth (DC 25 MHz)
and high sensitivity
($100 \mu \mathrm{~V} / \mathrm{cm}$) for general oschioscope applications.
With a choice of 7 plug-ins (5 amplifiers and 2 time bases)
it is possible to assemble an oscilloscope capable of meeting almost any measurement requirement. Combining such versatility with excellent tube geometry and high
writing speeds makes the D. 43 illustrated
outstanding value for money.
Write for full details Now!!!

TELEQUipment <Q>

Telequipment Ltd., 313 Chase Road, Southgate, London, N.14. Tel: 01-8821166 Telex 262004

Wireless World

Electronics, Television, Radio, Audio

This month's cover symbolizes the subject discussed by S. W. Amos on page 63.

IN OUR NEXT ISSUE

Constructional details of an ultra-low distortion class A amplifier with a frequency response of 15 Hz to 92 kHz (-3dB).
80-metre s.s.b. receiver. Full details for building this amateur band receiver.

February 1970
Volume 77 Number 1412

Contents

Literature Received
SITUATIONS VACANT
A118 INDEX TO ADVERTISERS
Is there a Doctor in the House?
Loudspeaker Performance by Paul Klipsch
Time by Thomas Roddam
New Ceramic Control Device
Ceramic Pickups and Transistor Pre-amplifiers by B. 7. C. Burrows
News of the Month
Graphical Symbols by S. W. Amos
Matching by R.W. Cotterhill
Announcements
Instrumentation Amplifier by A. E. Crump
Advance in I. C. Manufacturing Technique
Circuit Ideas
Letters to the Editor
Active Filters-by F. E. J. Girling © E. F. Good
Amplitude Modulation using an F.E.T. by M. E. Cook
A New Book on Colour TV
Conferences \& Exhibitions
Variable Voltage Reference Source for D.C. Regulators by Peter Williams
Telecine Film Corrector
Magnetic Recording Techniques for Colour Television by Aubrey Harris
Personalities
New Products
World of Amateur Radio
Test Your Knowledge questions \mathfrak{E} answers devised by L. Ibbotson
Meetings
H.F. Predictions
Literature Received
A118 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Lid Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1 C I.P.C. Business Press L.td, 1969 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

How we made thyristors a commercial proposition for consumer products

Three years ago a Mullard design team was given the problem of developing thyristors for motor speed control in washing machines and drills. Thyristors offered important advantages over conventional power control methods, but at that time, production was confined to relatively expensive industrial devices. The high unit cost was essentially due to specialist production techniques.

Two Requirements The Mullard team set about designing inexpensive thyristors, together with triggering devices, for use on domestic mains supplies. Two current handling capabilities were identified as being necessary to meet the range of
applications-6.5A for washing machines and other heavy current loads, and 2A for drills and lighter loads.

Within six months two consumer type thyristors, BT 101 and BT102, had been developed for 6.5A applications, and they were soon in mass production. Now these devices, in the TO-64 studmounted metal encapsulation, are well established.

Low-cost Plastic After further design work, a new plastic device, the BT100A, was introduced to meet the lower current requirements. Plastic power device technology is highly specialised, and only intensive effort over many years has resulted in the highly automated manufacturing techniques which ensure extremely good reliability.

Computer Testing To cope with the necessary high rate of production, computer techniques were introduced to record test results and to allow automatic grading. The testing cycle was significantly shortened by the use of high-current pulses for directly heating the thyristor crystal. This is one of the best automated methods of testing breakdown voltages at the highest junction temperatures.

The result ? A range of thyristors capable of meeting all the consumerappliance manufacturers' current needs,
and of improving both the efficiency of power-control and the usefulness of the units controlled. They offer consumer product manufacturers smooth, continuous and efficient power control.

Worth it? Right from the beginning we've had everything under our control, so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across the very wide Mullard component range. Our components find applications as unexpected as Astronomy and Zoology, giving us experience in many technologies. Experience our customers now take for granted.

Mullard

components for

 consumer electronicsMullard Limited
Consumer Electronics Division
Mullard House Torrington Place
London WCl

Is there a doctor in the house?

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALI.

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant:
J. GREENBANK, B.A

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

It was reported some time ago that because so many of the residents in the neighbourhood of one of the NASA research establishments had doctorates it had been decided to call only the medico "doc". (For most G.Ps in this country this is, of course, a courtesy title.) The number of doctorates awarded annually in the U.S.A. is said to be about 20,000 in all subjects and this number is expected to double during the present decade. In this country the number of graduates taking Ph.D. courses is about 2,000 .

These facts are by way of introduction to the general question of the Ph.D. system in this country which has come under severe criticism from several different sources and was recently highlighted by Lord Blackett, O.M., C.H., in his anniversary address as president of the Royal Society. He suggested that many British industrialists consider that the present system concentrates so much on basic science that it "unfits many able young people from taking up a career in industry. . . . Thus the attractiveness and efficiency of the British Ph.D. system as a training for basic science is viewed by some industrialists as at least a partial cause of the relative technological backwardness of some parts of British industry."

The Ph.D. degree, which to many a young student is seen as "a passport to the laboratories of the world", is seen by some industrialists as "of little or no use for someone who is to go into industry". Despite this criticism industry recruits Ph.Ds whenever possible "because they believe that at the present time a large fraction of the brightest young people take a Ph.D".

Some months ago the Royal Society undertook an extensive investigation into the suitability of a Ph.D. in engineering and technology as a prelude to a career in industry*. Although divergent views were expressed in the report the consensus was that several changes need to be made in postgraduate training given in universities for students studying for a Ph.D. in engineering and technology. Some of the conclusions are that Ph.D. education should be concentrated in a small number of universities with strong research schools; that the research projects undertaken should be fully justified in their own right as pieces of engineering and technological research; higher entry standards for Ph.D. candidates; and that candidates should be allowed to participate during their studies, in the most technically advanced parts of industry.

Lord Blackett considers that it is "vitally important to maintain and, if possible, strengthen the present outstanding position of British basic science. . . . The Ph.D. system is a cheap and efficient way of getting first-rate research done in basic pure and applied science, and lends itself to the building up of creative multi-national research schools."

What are the prospects for an engineer or technologist who, having undertaken three years' postgraduate research, receives his doctorate? Has he any advantage over his contemporaries who, having graduated, went straight into industry but are not "doctors"? According to the managing director of one of our major electronic companies (who is himself a Ph.D.) he cannot pay them a salary commensurate with their age and academic attainment because there are not a sufficient number of senior positions. Some such major companies consider that they could have given the candidate more industrially oriented technological training in their own research establishments. But, of course, the candidate would not have the piece of vellum, now the cachet which the Ph.D. gives.

It would appear that, for those graduates who plan to join the academic staff of a university or undertake pure research in a Government establishment, the Ph.D. is attractive and worth while. But for those planning to go into industry? The mark of interrogation is large.

Loudspeaker Performance

A discussion of power output and distortion levels for direct-radiator and horn-loaded loudspeakers

By Paul W. Klipsch*

A loudspeaker is a device to reproduce original sounds. It follows that the basic attributes of a speaker are:
acoustic power output
distortion
polar distribution
frequency response
in that order of importance.
Defining distortion as the generation of frequencies not originally present enables us to distinguish between this fault and that of errors in frequency response.

Harmonic distortion is relatively unimportant because music consists largely of harmonics, and this attribute is negligible compared to modulation distortion which involves the introduction of inharmonic frequencies not originally present.

For purposes of this discussion and for testing, the spectrum is simplified to contain only two frequencies, f_{1} and f_{2}, and the modulation distortion components would consist of new frequencies

$f_{2} \pm f_{1}, f_{2} \pm 2 f_{1}$, etc.

Frequency modulation distortion (f.m.d.) results mainly in first order sideband frequencies.

$$
s_{2}^{2}+6
$$

and the amplitudes of these sideband frequencies expressed as a fraction or percentage of the amplitude of f_{2} is the measure μ sed. There are second-order sideband frequencies, $f_{2} \pm 2 f_{1}$, but these are usually very small compared with the first order components.

Amplitude modulation distortion (a.m.d.) gives rise to both first and second order sideband frequencies, and usually higher orders in smaller amounts. If the cone compliance and magnetic system of a loudspeaker are nearly symmetrical it can be shown that mainly even-order sideband frequencies are produced

$$
f_{2} \pm 2 f_{1}, f_{2} \pm 4 f_{10} \text { etc. }
$$

usually with the 4th order components of negligible magnitude. Total modulation distortion (t.m.d.) is the root-mean-square sum or effective value of all the sideband components.
The main purpose of this article is to show the advantages of the horn-loaded loudspeaker over the direct radiator in increasing power output capacity with a reduction in total modulation distortion. Almost always t.m.d. is inversely - Klipsch \& Associates, Inc., Hope, Arkansas.
proportional to efficiency. ("Almost" may be an understatement.) Cost per speaker is somewhat lower for direct radiators than for horns, but the cost per acoustic watt output capacity is vastly higher for the direct radiator.

Woofers, squawkers and tweeters

The bass component of a loudspeaker, dubbed the "woofer" in U.S. cinema parlance (the term dating back to the late 20 s or early 30 s), is the largest and most expensive component. It has to handle the long wavelengths, and to be efficient must have a size comparable to a sixth or even a quarter wavelength. The small "book-shelf" speakers that can handle 25 -foot wavelengths must necessarily be inefficient. Also they must be limited in power output. Their t.m.d. is high. To radiate one acoustic watt at 32.7 Hz (low $\mathrm{C}-4)$ a 10 -in cone would have to move 2.2 in . To express it another way, if the cone excursion were limited to 0.8 in the power output would be only 0.1 acoustic watt. Even this small excursion would produce several per cent total modulation distortion.

Since woofers constitute the most expensive and largest component in a speaker system, and since "more bass" is

a popular public demand, the result has been the "long throw" driver unit with excursion capabilities of the order of 0.75 in. Practically every "major breakthrough" in new speakers being marketed involves this long-throw aspect, in total disregard of the fact that frequency-modulation distortion is directly proportional to the amplitude of cone motion.

Costing several times as much as the long-throw bookshelf speaker, horn woofers may require from 16 cu ft (for a corner type) up to eight times that much for a typical theatre "tub"-type woofer. But the cone motion for a given output is reduced to a small fraction of that required in a small-box speaker. The term "undistorted output" is sometimes used. Personally I try to avoid the term. If a cone moves, it produces distortion, so I prefer to use the term "minimum" distortion as applied to horn speakers. Actually the distortion may be reduced by a factor of $1 / 10$ or even $1 / 100$ by the use of horns.

The midrange, which by itself is apt to sound "squawky" and has thus been dubbed the "squawker", is the part of a loudspeaker that carries a great deal of the intelligence and most of the articulation. Distortion in this range can mask the sounds by which one distinguishes, for example, "key" from "tea".

Tweeters when used in conjunction with bass and midrange speakers normally cover only the range above 4 or $6 \mathbf{k H z}$. In other words the tweeter covers the range containing the upper partials of the piano and the "noise" components of speech.

In every case--woofer, squawker, tweeter-the horn offers "cleaner" sound at all practical levels of sound pressure output. Indeed the horn is about the only means for delivering extremely high sound pressure levels with reasonably low distortion.

The cost difference between horn-type and direct-radiator treble speakers is not as great as for woofers, but the advantages are probably greater. After all, the midrange is "where we live" and distortion in this range even in small amounts can be cumulatively irritating.

In comparing horn type speakers with direct radiators, one may start with the drive system which, in the bass range, will be essentially the same for either type. The
driver comprises a voice coil in a magnetic field, with a conical diaphragm attached to the voice coil. In the direct radiator, the driver is mounted in a hole in a baffle; the baffle may be a wall or a box; the box may be a total enclosure or ported. Lord Rayleigh wrote the equations for the function of a "rigid circular plate vibrating in an equal circular aperture cut out of a rigid plane extending to infinity".' In other words, he described mathematically the action of a "direct radiator loudspeaker" and the true "infinite baffle" about 46 years before Rice and Kellogg ${ }^{2}$ were to invent the loudspeaker of this type.

Loudspeaker analogies

A crude analogy of the direct radiator loudspeaker would be a "baffled" piston on the surface of a lake. It could agitate the waters but it would not be much of a pump. But put a cylinder around the piston, and it becomes capable of lifting the water. This is analogous to the driver unit coupled to a horn. The cone is forced to work at higher pressures with lower velocity.

Another analogy is the gear ratio of the automobile which transforms the "low impedance" engine-low torque, high speed-to the "high impedance" drive wheels-high torque, low speed. The direct radiator speaker is a low impedance device-low pressure, high velocity. The gear box is an impedance transformer. The horn acts as a transformer to increase the pressure and reduce the motion of the driving system.

A direct radiator in a box has a hard time acting directly on the large but imponderable body of air in a room, but horn coupling enables the same drive mechanism to be more effective in actuating the same body of air. The transformation results in better coupling between the driving force exerted by the voice coil and the air in front of the horn. An increase in efficiency of the order of 4 to 10 times usually occurs. This means from 4 to 10 times as much acoustic output for a given amplifier output, or a reduction in amplifier requirement by a factor of $1 / 4$ or $1 / 10$ for a given acoustic output.

Choice of driver

The choice of driver unit characteristics becomes a matter of importance, and often different driver unit parameters are chosen for horns than for direct radiators. For example, an extreme case involves adding weight (mass) to the vibrating system to reduce efficiency and flatten the frequency response curve. Such a driver in a direct radiator system might exhibit an efficiency of the order of 0.05%. It would be unsuited to drive a horn system. More efficient direct radiator systems might achieve 1% efficiency. The purpose of the weighted cone is to permit a flat response down to, say, 50 Hz in a small box of the order of 1.5 cu ft . Without the extra weight on the cone the box would need to be about 4 to 6 cu ft for the same frequency response but at about 10 times the efficiency. An optimum driver unit
matched to a horn would afford the same frequency response (low-end cut-off) with 5 to 10% efficiency.

Modulation distortion

Modulation distortion is directly affected by the amplitude of diaphragm motion, and would thus be greatly reduced by horn loading.

As stated in the introduction, this distortion consists of amplitude modulation distortion and frequency modulation distortion, the r.m.s. sum of which is the total modulation distortion.

It has been shown that f.m.d. is directly proportional to the amplitude of diaphragm motion ${ }^{3}$:

$$
\begin{equation*}
\text { f.m.d. }=0.033 A_{1} f_{2} \tag{1}
\end{equation*}
$$ where A_{1} is the amplitude of diaphragm motion in inches at the lower or modulating frequency f_{1}, and f_{2} is the frequency being modulated. The f.m.d. is expressed as a percentage of the signal amplitude of f_{2}.

This writer applied the audio spectrum analyser to evaluate actual amounts of f.m.d. in typical loudspeakers. ${ }^{4}$ Amplitude modulation distortion can also be shown to be proportional to the amplitude of diaphragm motion. ${ }^{\text {. }}$

The fact that both forms of distortion are proportional to the amplitude of diaphragm motion shows the importance of reducing this motion. Recall the example of the 10 -in cone radiating 0.1 W and performing an excursion (peak) of 0.7 in (0.2 Sin r.m.s. amplitude). Suppose f_{2} were 700 Hz , then
f.m.d. $=0.033 \times 0.25 \times 700$

$$
=6 \% \text { approximately. }
$$

The t.m.d. might well be twice that amount. Experiments with "long throw" direct-radiator speakers have shown t.m.d. of this and higher order of magnitude.

A horn-loaded driver of comparable size might deliver 1.0 W output with 0.07 in excursion, the f.m.d. would be about 0.6% and the a.m.d. would be insignificant. A bonus would be that the efficiency would have been multiplied by a factor of about 10 , and the demands on the power amplifier reduced.
So far it is not known how much modulation distortion is "objectionable",

[^2]"barely audible", "marginal" or "tolerable". We do know that listeners describe good horn speakers as "clean" and "transparent", and the smaller direct radiators as "veiled" and "muddy". In between are the better and larger direct radiators, and the descriptive terminology varies with whether such speakers are compared to inferior direct radiators or superior horns.
We know too that the shellac disc was the marvel of the age in 1909 and that words were barely intelligible; by 1919 things had improved, and by 1939 had improved some more. But now we realize that the response errors and distortion on these old records preclude pleasurable listening. By 1989 perhaps current 15 i.p.s. tapes will be scorned to the same degree. Surely our tolerance of distortion is decreasing.

Size and cost

A speaker of only 1.5 cu ft having a reasonably flat response down to 50 Hz is an accomplished fact. A horn system with comparable response would entail 20 cubic feet. There is a vast difference in the power output capacity. The small direct radiator might handle 90 dB sound pressure level (s.p.l.) at 2 feet with 10% total modulation distortion, and the horn 100 times as much power (110 dB s.p.l.) at less than 1%.

The cost is always a factor. A typical 1.5

Cutaway model of Klipschorn showing exponential sound passages and back air chambers of bass horn, and section of mid-range horn. The highfrequency horn and driver can be seen over or on top of the midrange horn.
cubic foot direct radiator might typically cost $\$ 150$ to $\$ 250(£ 62$ to $£ 104)$ and a high quality horn system would cost $\$ 600$ to $\$ 1000$ ($£ 250$ to $£ 410$). Expressed in terms of cost per watt output, the horn wins by a wide margin-see Table 1.

If one includes the cost of amplifier power the advantage is still further in favour of the horn system.

Upper frequencies

Much of the foregoing text has been written with bass loudspeakers specifically in mind. The bass part of a 2 - or 3 -unit loudspeaker is the most bulky, massive and expensive part.

But the facts relating to distortion and power output are at least equally applicable to treble speakers. Perhaps more so; the midrange, from 400 to 6000 Hz is the region where the ear is most sensitive. It is in this range where distortion can be detected by ear in quantities that would defy instrumental detection except with highly sophisticated devices such as a spectrum analyser with a 60 dB range. The midrange is where we live. A recent article ${ }^{5}$ describes a "Jecklin" horn bass-range loudspeaker (which appears to be based on my paper of 1941° but the author employs small directradiators for the upper frequencies). Our experience with such a top-end speaker showed that it displays over 5% sideband amplitudes and over 10% total modulation distortion at only 90 dB s.p.l. output. A good horn system displayed less than 1% t.m.d, at 100 dB s.p.l. at 2 feet. To repeat, the midrange is "where we live" it is the range that costs the least in money to be right and costs the most in listener displeasure when it is wrong.

Tests

To illustrate, Fig. 1 shows the spectrum analysis of two speakers; top, a high quality horn-loaded midrange ${ }^{7}$, and bottom, an 8 -in direct-radiator midrange. (This was by no measure a "cheap" speaker!)

The figures were traced from spectrograms photographed on a Tektronix 564 oscilloscope with a 3L5 spectrum-analyser plug-in unit. The left edge is $f=0$. The two solid bars are the acoustic outputs resulting from inputs of f_{1} $=510 \mathrm{~Hz}$ and $f_{2}=4400 \mathrm{~Hz}$. The dashed bars are distortion components; in the top figure (a) there are two sideband frequencies of $f_{2} \pm f_{1}$. The grid represents 10 dB intervals, so the sideband components are more than 40 dB below the amplitude of f_{2}. The t.m.d. is less than 1%.

In the lower figure (b), one sees harmonics of f_{1} out to the 4 th harmonic, and both first and second order sideband components of significant amplitudes, the t.m.d. amounting to a little over 10%.

The sound pressure level output of the horn system was 100 dB s.p.l. at 2 feet; for the direct radiator the output was only 90 dB .

In my Audio Engineering Society ${ }^{4}$ paper I proposed to call the percentage of

Fig. 1. Spectrum analysis of the output of a high quality horn-loaded midrange speaker (top) and an 8-in direct-radiator midrange (bottom).
t.m.d. the "mud index". Since the t.m.d. is dependent on power output it might seem desirable to employ a "mud/power" index where the t.m.d. is divided by the power output with 100 dB s.p.l. chosen arbitrarily as unity. Thus the mud/power index for the horn would remain at less than 1% or simply one, and the index for the direct radiator would be $10 \% / 0.1$ or 100% or 100. (0.1 being the power ratio of 90 dB relative to 100 dB).

The $£ 400$ horn is not going to replace the $£ 4$ cone in a cheap radio. There is a lot of sense in replacing some of the high-distortion cones with small horns at a small cost increase where intelligibility is important, and there is a lot to recommend the $£ 400$ horn over a $£ 50$ direct radiator for entertainment. One just doesn't have to filter the music from so much mud.

In the specific example of the Jecklin version of my 1941 woofer, the major cost has already been incurred; the bass system has cost $£ 100$ or 200 hours labour or some such near equivalent, and to put a direct radiator tweeter on it gives it the overall performance of a cheap direct radiator speaker. At our plant we spent vastly more man-hours and man-years developing a "top end" (midrange and tweeter system) than we did on the woofer. To say again, the midrange is where we live.

Corner speakers

Take any loudspeaker of any size, make, type or price and compare its operation in a corner with its operation in some other location. You may reasonably expect 3 to 6 dB more power output for a given input,

Table 1

	Watts output	Cost \mathbb{C}	£ perwatt output
Small DR	0.05	100	2000
Large DR	1.0	200	200
Large Horn	10	400	40

a slight reduction in total distortion and beneficial response characteristics over the entire audio spectrum. We tested a small direct radiator and found corner operation extended the bass range $1 / 4$ octave, improved response at 16 kHz and averaged 5 dB increased sound pressure level for a given input.

The principle is that of "mirror images". A speaker in close proximity to a wall has, in effect, a mirror image behind the wall, doubling the effective radiating area. The three walls at a corner double the effect three times.

If my 1941 bass horn (and the "Jecklin" version) were not in a corner it would have to be eight times as large. Its actual mouth area is only 780 sq in but its effective area is eight times that value. All speakers (I have found no exceptions) work better in a corner. This applies to the "audio" function; it also applies to the "stereo" function. But stereo is another story. Take my word for it, that every experiment we have conducted in stereo bears out the advantage of using corners for speaker placement. As for the audio function, try it, preferably with a small enough speaker to be lifted easily. While it is playing have someone walk it into a corner. Listen.

This is one way to double or quadruple the sound pressure level without increasing distortion.

Combining corner operation with horn loading affords the ultimate in low distortion at whatever power level desired.

Conclusion

Horn loading and corner operation offers the lowest distortion per unit of power output. The combined effect offers an improvement in performance per unit cost by a factor of 100 or more. Of importance also is the reduced power amplifier requirement for a given acoustic power output.

REFERENCES

1. Lord Rayleigh, Theory of Sound, McMillan 1877.
2. C. W. Rice and E. W. Kellogg, "Notes on Development of a New Type Hornless Loudspeaker", Trans. A.I.E.E., 44, pp.461-480, 1925.
3. G. L. Beers and H. Belar, "Frequency Modulation Distortion in Loudspeakers", Proc. I.R.E., 31, pp. 132-138, 1943.
4. P. W. Klipsch, "Modulation Distortion in Loudspeakers", Jour. Audio Engineering Society, Vol.17, No.2, pp.194-206, 1969.
5. A folded Exponential Horn Loudspeaker, Wireless World, Feb. 1969 pp. 90.91.
6. P. W. Klipsch, "A Low Frequency Horn of Small Dimensions", Jour. Acous. Soc of America, Vol.13. No.2, pp.137-144, Oct. 1941. 7. P. W. Klipsch, "A New High Frequency Horn", I.E.E.E. Trans. on Audio, AU-II, No.6, pp.202-206, Nov. \& Dec. 1963.

. . . . like an ever rolling stream bears all the charge away

Thomas Roddam discourses on time constants

One of the results of the electronics explosion has been to convert a good deal of design work into ritual. We substitute numbers in expressions for the component values in standard circuits. If we are lucky the expressions are already safely lodged in the computer and we really need not know what they are: if we are unlucky we must look them up in a book and drive our own sliderule. A good many young engineers do not even need to know what the final object of the performance will be.

I believe that there may be some spiritual or philosophical virtue in inventing the mantra Om mani padme hüm. I cannot see any merit in copying it down and spinning it on the shaft of an electric motor. Ritual in fact becomes even more than a substitute for thought : it becomes an excuse for avoiding thought. One way of making sure that you still can think is to consider the first principles of your art.

The first problem in attempting this is the rather unexpected one of deciding what we are talking about in discussing electronics. An obvious answer is quite simply electrons in action. This does not really suit my purpose, because in order to keep my thoughts related to experience I need to deal with things which I can measure. Individual electrons are not the stuff on which our circuits are based. Nor, in general, is the electromagnetic field. Circuit design, at bottom, is an affair of amps and volts.

Amps, volts and seconds. The changes which take place in the currents and voltages with the passage of time are the business of the circuit designer. The digital circuit engineer may think that he has avoided this, that he is concerned only with states of a system. If this is true for him, he is a lucky man who has managed to let someone else have his hang-over. Someone, somewhere, has worried about what happens during the time, which may be only nanoseconds, when the system is changing state.

If we are to start at the beginning it seems reasonable to take our old friend Ohm's Law. Although we regard this as pretty commonplace, we must remember that in any real situation,

$$
V=I R
$$

implies really a term which we should write

$$
R(V, I, t) .
$$

So long as there are supplies of nickel we can get components for which the ratio
(V / I) is so nearly constant, at our sort of voltage and current level, that R can be regarded as independent of voltage, current and time. The constancy of R is, of course, vital in ensuring circuit linearity and the low distortion of the best feedback amplifier is an indication of how R can be regarded as completely independent of V and I. In practice we do not need to take elaborate precautions to obtain resistance elements which can be treated as pure Ohm's Law components. There will be parasitic inductance and capacitance, there will be aging effects, the cheap may well be nasty, but on balance we find that the modern resistor is a very close approximation to the ideal.

Just as well, perhaps, because few laboratories have any way of checking this. It is a long time since I was at school, but my guess is that your first introduction to Ohm's Law was to draw a graph of V against I for some sort of resistor, using, to measure V, a moving-coil meter which measured the current through another resistor. This is just one of those traps which are waiting for us when we look back at the foundations on which we have built.
The ideal resistor is a physical component which has a characteristic, resistance, which is independent of time. It is, now, and the past is wholly irrelevant. The other two simple passive elements are, in a way, pure memories. Throbbing between two lives they have foresuffered all.

The capacitor is also a physical component which is very nearly ideal in its commercial form. What is the essential characteristic of capacitance? The physicist might say that it is energy storage. If we put an amount of charge Q into a capacitance C we

Fig. I. When the switch is closed no curven will flow:

shall have bottled up (Leyden, not Kilner) an amount of energy equal to $\left(Q^{2} / 2 C\right)$. Very nice too, but all I have is an Avo and a stopwatch. I can't measure Q and I can't measure the energy. Another way of defining capacitance is by the equation $C=\boldsymbol{Q} / V$. Capacitance is the charge stored per volt. Again there is this wretched charge, but here we have quite a useful equation. Suppose that we have two capacitors, C_{1} and C_{2} (and their capacitances are the same as their names), each charged to some voltage V. We have, in fact, just applied the same battery in turn to their terminals. Now we join the terminals by ideal conductors in the way shown in Fig. 1. No current will flow when the switch is closed. We had

$$
Q_{3}=C_{1} V \text { and } Q_{2}=C_{2} V
$$

V is unchanged, the total charge is unchanged, so we now have

$$
\left(Q_{1}+Q_{2}\right)=Q=\left(C_{1}+C_{2}\right) V
$$

This definition is thus the obvious one for establishing the rule for paralleling capacitances, and it is easy to use it (if we use equal charges) for establishing the rule for series connection.

Simple stuff, you may say. Not to all readers. I met recently, in a small company, a senior man who designed, if that is the word, relay circuits, for production, but who was baffled by the currents in a series. parallel combination of three resistors.

For practical purposes we are still a little far from practicality. We know that a capacitor will store charge or energy. The classic experiment using a group of monks is not easy to perform, but electricity shocks layman and cleric alike. And why think of this energy simply when stored and static, like a bar of gold under a French peasant's bed? Let us shift it from store to store, like marks and dollars hunting the most profitable home, or spend it, dissipate it in a resistance.
The hot coulomb will come later. Now we can get towards the first kernel of our story by considering the circuit shown in Fig. 2, a circuit so simple that it does not even need a caption. At the instant when the stopwatch is started, current begins to flow and, at this moment, when $t=0$, the current must be given by

$$
I=V / R .
$$

Notice that we can measure all these things, even though, if the time-scale of the
whole experiment is very short, we may need something a bit more sophisticated than a moving-coil meter.

We have this idea of charge and capacitance, with $Q=C V$. The current, I, represents the flowing away of charge. Flow is often a measure which makes more subjective appeal than quantity: the speed and depth of a river are the quantities which we think about as natural man ; the volume and height of a lake we only consider as engineers.

In this simple circuit Q is not constant, because we have charge flowing away as current. At any time $t=t$ we have

$$
\frac{d Q}{d t}=-I
$$

There are several different ways of proceeding from here and we want the one which looks easiest. If we write

$$
\begin{aligned}
& I=V / R=Q / C R \quad \text { we get } \\
& \frac{d Q}{d t}=-\frac{1}{C R} \cdot Q \\
& \text { and thus } \quad \begin{aligned}
\frac{d V}{d t} & =-\frac{1}{C R} \cdot V \\
\text { or } \quad \int_{2}^{V} \frac{d V}{V} & =-\int_{0}^{t} \frac{d t}{C R}
\end{aligned}, l
\end{aligned}
$$

The limits are put in for $V=1$ at $t=0$, because then we use the definition (Hardy, Pure Mathematics, p. 358 of 5th ed.)

$$
\log V=\int_{1}^{V} \frac{d V}{V}
$$

and so $\quad \log V=-t / C R$
Notice that this is a function theory definition of log. The properties are proved from this definition, and then you start carving your slide rule. Another definition gives us

$$
V=e^{-t / C R}
$$

or, if we started with $V=V_{0}$ instead of $V=1$

$$
V=V_{0} e^{-t / C R}
$$

In the most general way, we can arrange this as:

$$
\frac{V}{V_{0}}=e^{-t / 10}
$$

I have written $C R=t_{0}$, because the term $t / C R$ must be dimensionless, a number.

Quite formally then we introduce a characteristic time, $t_{0}=C R$, associated with the resistance-capacitance circuit. Quite naturally we call this the time constant. Very often you will find references to ohm-farads, or megohm-microfarads: can you run 100 yards, or metres, in 10 ohmfarads. We should think more often of our capacitors in terms of their (seconds/ohm) capacitance. The audio engineer, nowadays, is concerned largely with milliseconds/ohm and milliseconds/kilohm sizes. For example, smoothing the power supply to a transistor amplifier his characteristic time is 10 milliseconds (100 Hz) and the resistance may be 20 ohms ($20 \mathrm{~V}, 1 \mathrm{~A}$). The capacitance which just starts to smooth the ripple will be 0.5 millisec/ohm. In fast switching circuits capacitances measured in nanosecs/ohm will begin to interfere with operations. Of

Fig. 4.
course we shall go on talking about microfarads and pFs. The fact that we are also thinking of seconds per ohm, or amp seconds per volt, enables us to keep the feeling for magnitude which picks up stupid errors. And if you don't think stupid errors can happen, ask anyone who bought Poseidon shares when borehole No. 4 reported 9.38% nickel, only to learn, 15 minutes later, that the figure was really 0.38 .

One aspect of this analysis I find particularly interesting is that if the mathematicians had not caused the exponential function to exist, we should have had to invent it. It is the description of observed behaviour. And it all depends on the fact that both C and R are constants, because if C were not constant we should have had

$$
\frac{d Q}{d t}=\dot{C} \frac{d V}{d t}+V \frac{d C}{d t}
$$

and the second term would not have been thrown away.

Let us turn away from the $R C$ circuit to consider inductance. Exclude from your mind, for the moment, your views on inductors and consider only the abstraction of pure inductance. What is its basic property? We saw that capacitance, left alone, open-circuited, remembered voltage. Inductance, left alone, short-circuited, remembers current. Generally it is necessary to carry out this experiment with superconductors to obtain the sort of time scale we can get very easily with a commercial capacitor, although one practical exception is the reversal of power flow in international submarine cable energy links.

How do we deal with inductance? We had to mention charge in discussing capacitance, even though the charge concept carries the odour of pith balls, cat's skin and glass rods. I don't know when real cat skin was last used in school physics although I have heard a lecturer describe how his early magnetic research was thrown into confusion by a lady (what else?) assistant's stay bones. Charge, however, is simply the amp second storage of a capacitor in a particular state, that is capacitance C charged to voltage V. An equivalent situation for an inductor will be the volt second storage with an inductance L carrying a current I. The object of this is to keep our mathematics in similar form to the previous batch. We write

$$
M=L I
$$

and instead of the usual $V=L d I / d t$ we say

$$
\frac{d M}{d t}=+V
$$

This equation agrees with the volt second storage concept, the fact that

$$
M=\int_{0}^{t} V d t
$$

The rules of procedure which I have adopted lead to some confusion of signs. Drawing the circuit in the form shown in Fig. 4(a), with a constant current source, makes things clearer. The source is removed effectively by closing the switch, just as we could have studied the $R C$ circuit by working with Fig. 4(b), in which the start, at $t=0$, is when the switch is opened. Conditions for negative values of t are slightly different, but that does not matter.

With the arrangement shown in Fig. 4(a) we see how the senses of the voltage across the inductance and the voltage across the resistance appear. After $t=0$ we have, of course,

$$
V=I R=M R / L
$$

The induced voltage is in the opposite direction and is $-d M / d t$, so that

		$\frac{d M}{d t}$	$=-M \frac{R}{L}$
	giving	$\frac{d I}{d t}$	$=-I \frac{R}{L}$.
	and	$\frac{I}{I_{0}}$	$=e^{-t / t_{0}}$
where	t_{0}	$=L / R$	

Again we see the natural appearance of a time constant, the natural appearance of the exponential. Now, however, the unit of inductance is the second-ohm. In the smoothing application, with $t=10$ milliseconds and a 20 -ohm circuit we see that smoothing begins at around 200 millisecohm, or 0.2 H . At the other extreme, 20 nanoseconds times 50 ohms gives us one microhenry, the inductance of two or three feet of wire. Of course, if the wire forms part of a transmission line, 20 nanoseconds is the order of magnitude of the propagation of energy along it.

One of the difficulties the practical engineer experiences is the imperfection of real inductors. He may avoid this problem throughout his career; he may, at the other extreme, base his career upon it. Those who are engaged in work on low-level selpetive circuits, for example, do not consider inductance to be a really awkward element. One must account for the inevitable resistance, but it is a relatively small term so long as you do not let ambition outrun performance. The order of magnitude of the $L I$ product is, however, only around 10^{-4} henry-amps, or 10^{-4} volt-seconds.

We move into quite a different world when the inductor must support, say, 200 volts for $1 / 100$ second. Now we have 2 volt-seconds to consider. Whether one considers energy density or "charge" density as the criterion is an interesting question, but even with charge density the ratio is $(27)^{3}: 1$. Inductors for power system working are designed to be of reasonable size, while inductors for low-level filters are designed to be of convenient size, to use wire which will not break in handling.
The capacitor designer, at one time, had the same problem. Fifty years ago the Carnarvon transmitter incorporated a capacitor which filled a room, its air-spaced plates hanging down like the week's washing in a Spanish slum. On one occasion,

Fig. 5. Basic circuit for examining saturation time constant.
indeed, a dog walked into the capacitor. Steady progress from waxed paper to polywhatsit film has brought the factor $\mathrm{CV} /$ inch 3 down without any loss of linearity. No such luck for the inductor designer. He is stuck with iron, or, more precisely in inductor design, a combination of a selected iron alloy and air.
I do not think this is the point at which I want to discuss inductor design. There is, however, another time constant which appears when we talk about iron-cored inductors which may, conveniently, be mentioned.

Suppose that we take such an inductor, which we believe to have an inductance L. We apply a voltage to this, and watch the behaviour of the current. It follows the simple law
or

$$
\begin{aligned}
\frac{d I}{d t} & =\frac{V}{L} \\
I & =\frac{V}{L} \cdot t
\end{aligned}
$$

growing linearly as time passes. Grows linearly, that is, until quite sharply, it starts to increase at a much higher rate. If the equations above have any meaning, the inductance L must have fallen to a much lower value. The sharpness of the change depends very largely on the core material, and in practical use of this phenomenon any air-gap and any eddy-current effects must be taken into account. This is, of course, the phenomenon of saturation.

We have been adopting the modern "discovery" method of learning in our approach to the $C R$ and $L R$ circuits. This is also known as Squeer's Way (W.I.N.D.E.R, winder $=$ now go and clean them). The basic experiment is a simple one. If we connect a battery, a reversing switch, a resistor, and a voltmeter to our inductor, in the way shown in Fig. 5, we can carry our core from saturation in one direction to saturation in the other. The resistor is only there to protect the battery and should be relatively small (whatever that means). When we flip the switch the voltmeter will read nearly the full battery voltage and will fall steadily as the product $/ R$ increases, until I jumps up. We want this drop to be quite a lot less than V for our experiment to be meaningful.
The first experiments will show that a particular inductor has a particular voltsseconds product. This time constant is not a constant at all, but is inversely proportional to the applied voltage. Further experiments reveal that it is in fact proportional to the turns per volt for a fixed core area. It is also proportional to the core area. The overall picture leads us to a property of the core material, the saturation flux density, with the defining equation

$$
V t=2 N A B \cdot 10^{-8}
$$

The units are cm^{2} and gauss, because those are the units adopted by the core material makers in their tables.

This kind of time constant is quite different theoretically from the $C R$ and L / R constants discussed at the beginning. It is interesting to notice, therefore, that both kinds are used in otherwise similar circuits, in inverter circuits. The $C R$ type is used mainly at frequencies in the kilohertz range, while the switching core type is commoner at low frequencies. There are other, minor, differences which relate to the detailed design. And certainly frequency is not fundamental, for to get time constants measured in terms of seconds we should certainly use the $C R$ circuit.

After this diversion it seems appropriate to refresh the reader's memory. With resistance and one kind of reactance we can generate, by a switching operation, a waveform which turns out to be the exponential function of the mathematicians. The scale of this is defined by the product $C R$, or the ratio L / R.

Books Received

The Semiconductor Data Book from Motorola is now available in its fourth edition. Instead of a number of product categories, discrete device specifications are presented in alpha-numeric sequence in three major sections: " 1 N " numbered devices; ' 2 N ' and ' 3 N ' numbered devices; and devices with Motorola "house" numbers. It is thus easier to obtain data. Also a 50 -page section of selection guides enable application requirements to be related directly to semiconductor device numbers. Furthermore, the book lists all ' 1 N ', ' 2 N ' and ' 3 N ' devices registered by the U.S. Electron Industries Association along with their short-form specifications. In all, more than 12,700 types are listed together with details of their characteristics. Pp. 2160 . Price £3 (plus 6s postage). Availabie from the Modern Book Co., 19 Praed Street, London W. 2 .

Tape Recorders: A-Z is essentially a catalogue of magnetic tape recorders available in the U.K. Also included are lists of mixers, headphones, tape, and accessories. The video lape recording section is divided into two parts-machines using $\frac{1}{3}$-in or 1 -in tape, and those using 2 -in tape. Essential technical specifications are supplied for each model along with a photograph, the price, and the address of the manufacturer or agent. This presentation is used for the recorder sections which are: professional (scientific and industrial) audio tape recorders; domestic and hi-fi tape recorders (including car tape recorders/players); tape teaching machines (domestic type); and background tape players. Pp. 164 including an index. Price £1. APA Publishing (Catalogues) Lid, Quality House, Quality Court, Chancery Lane, London W.C. 2 .

New Ceramic Control Device

Using the principles of both piezoelectricity and ferroclectricity, a new ceramic element invented at RCA Laboratories, U.S.A., has possibilities for remote and near control of domestic and other electrical appliances. It enables supply currents to be switched on, turned off or varied continuously. Being completely electronic it seems to offer longer life and higher reliability than the electro-mechanical devices often used for remote control. A particular feature of the new element is that it will "remember" its last control setting indefinitely, even if its supply power is cut off.

The device is constructed as a "sandwich" consisting of two ceramic wafers, each with piezoelectric and ferroelectric properties, bonded together by epoxy resin. The principle of operation is that when a material has both these properties a change made in the ferroelectric polarization alters the efficiency of the material's piezoelectric effect. When an a.c. signal is applied to one wafer, this wafer vibrates because of its piezoelectric property. The vibrations are transmitted through the epoxy bonding resin to the other wafer, which converts them back into an electrical output signal. The amplitude of the piezoelectric output signal can be varied by subjecting either wafer to an electrical pulse, which changes the ferroelectric polarization in the wafer and thereby its piezoelectric efficiency. Since the wafers are made of a stable ferroelectric material, the output signal is stable and changes only when the polarization is changed.

Two versions have been developed. One responds only to input signals in a narrow frequency range, while the other responds to input signals covering a broad frequency spectrum. Both versions use wafers made of ceramic lead zirconate/lead titanate material, often used in gramophone pickups. A wafer's polarization can be altered by any desired amount by applying voltage pulses to produce an electric field typically 10 to 45 volts per thou' of wafer thickness. In this way, the output signal can be varied continuously over a dynamic range of approximately 60 dB , in a period as short as one millisecond or as long as 1,000 seconds.

At present the device is purely experimental: no commercial exploitation is envisaged for the moment. Also it has not yet emerged what advantages this component might have over semiconductor control devices such as the thyristor and triac.

Ceramic Pickups and Transistor Pre-amplifiers

Are they incompatible?

by B. J. C. Burrows, B.Sc.(Eng.)

Abstract

Of the pre-amplifier designs published in Wireless World over the past eight years or so, Mr. Linsley Hood's ${ }^{1}$ is the first to provide proper equalization for ceramic pickups. This article explains in greater detail how he derived his pre-amplifier replay characteristics and gives a new simple circuit for correct-yet adjustable-equalization.

Ceramic pickups work on the piezo-electric principle, as do crystal pickups, and thus they are basically alike. The likeness extends further since historically crystal pickups were the first to be developed and marketed on a commercial scale, and they were followed by ceramic pickups (which are more reliable than their elder brethren, being less affected by temperature and humidity extremes). Many of the traditions of crystal pickup manufacture were carried over to ceramic cartridges, such as built-in mechanical compensation, and perhaps ceramic pickup manufacturers assumed that their products would be used generally into a high-impedance amplifier as in the "crystal pickup plus valve amplifier" days. It is apparent that many people experienced difficulty in using ceramic pickups (which usually need an input impedance of twice that for crystal pickups) with transistor preamplifiers and this has resulted in a wealth of designs for high input impedance converters using f.e.ts etc. to overcome the problems. The author thinks that this is an unsatisfactory method and that better results will be obtained by re-thinking the problem from scratch. By looking at the basic operating principles of the pickup and comparing these with the requirements, a simple design may readily be evolved.

Piezo-electric pickups

Let us first have a close look at the important characteristics of piezo-electric pick ups and contrast them with a typical magnetic pickup. As the name implies, the piezo-electric pickup depends upon the piezo-electric effect-that is, when certain crystals like Rochelle salt and barium titanate are strained (i.e. bent, twisted etc.) an e.m.f. is developed across the faces of the crystal. Conducting layers deposited on the opposite faces of the crystal with wires attached complete the piezo-electric transducer. The piezo-electric e.m.f. is proportional to the strain in the crystal element, so the e.m.f.

Fig. 1. (a) Equivalent circuit and (b) frequency response of piezo-electric pickup. $f_{\text {cer }}=\frac{l}{2 \pi C R}(C$ in farads, R in ohms, fin Hz).

(a)

(b)
)

Fig. 2. (a) High-resistance loading, $R=4 M \Omega$ and (b) low-resistance, "velocity" loading, $R=10 \mathrm{k} \Omega$.
generator in series with a capacitor. Fig. 1(a) will be immediately recognized as a differentiation circuit, that is, a high-pass filter whose cut-off frequency, called $f_{\text {cer }}$, separates a region of slope $6 \mathrm{~dB} /$ octave from a region of zero slope, as shown in Fig. 1(b).
For example, if $C=800 \mathrm{pF}$ and $R=4 \mathrm{M} \Omega$, then $f_{\text {cer }}$ occurs at 50 Hz . This will be termed high-imped ance loading because the voltage developed across the load is substantially independent of R and is equal to E, the pickup e.m.f. over the whole audio frequency range. That is to say, the voltage at the amplifier terminals equals the pickup voltage. So, if records were recorded with a constant amplitude characteristic \dagger a perfect piezo-electric pickup would require no further equalization.

An alternative method of operating the pickup is the "low-impedance loading" or "velocity loading" method. Here we choose R to place $f_{c e r}$ at the highest end of the frequency spectrum-say 20 kHz -where

[^3] before being amplified and fed to the loudspeaker

[^4]depends upon the amplitude of movement of the device transmitting the force to the crystal. Thus, in the case of a ceramic pickup the e.m.f. produced by stylus movements is proportional to the instantaneous deviation of the groove from the unmodulated position, or as is commonly said, the e.m.f. is proportional to the amplitude of the groove. This is the first fundamental difference between ceramic and magnetic pickups.

The second important feature is that the piezo-electric crystals are dielectrics and hence the conducting layers together with the crystal form a capacitor-typically 700 pF to 1500 pF which appears in series with the piezo e.m.f.*

We can draw an equivalent circuit for the pickup feeding into a resistive input impedance and this is shown in Fig. 1(a). The pick-up consists of a zero impedance

Abstract

R would equal $10 \mathrm{k} \Omega$ for a pickup capacitance of 800 pF as before. Referring to Fig. 1(b) again it can be noticed that if $f_{\text {cer }}$ lies at 20 kHz , the whole of the audio spectrum lies on that part of the curve with a rising frequency response of $6 \mathrm{~dB} /$ octave. Only above 20 kHz is V equal to E, so at $50 \mathrm{~Hz} V$ is very low (approximately -52 dB). The name "velocity loading" has been given to this mode of operation because the output shows a rising response with frequency as obtained from a magnetic pickup under appropriate conditions (see below). One frequently comes across this recommendation: to give approximate "velocity loading" load a ceramic pickup with $68 \mathrm{k} \Omega$! This recommendation is unjustifiable since the "velocity loading" will be effective only up to 2.5 kHz , and at 12 kHz , for example, $68 \mathrm{k} \Omega$ loading gives 12.6 dB less than true velocity loading.

Figs. 2(a) and (b) summarize the above ideas for a ceramic pickup of 800 pF operating into a load of (a) $4 \mathrm{M} \Omega$ and (b) $10 \mathrm{k} \Omega$, while playing a constant amplitude recording.

Magnetic pickups

I hope the reader will forgive the rather lengthy discussion on piezo-electric pick-ups-a few quick words will sum up the essential features of magnetic pickups. A similar type of equivalent circuit may be drawn except that, first, the e.m.f. is proportional to the velocity of the stylus at any instant and, secondly, this e.m.f. can be thought of as a zero impedance generator in series with an inductance, typically 500 mH . Fig. 3(a) shows the equivalent circuit and Fig. 3(b) the frequency response of this circuit when stray capacitance is ignored. It is seen that up to $f_{\text {mag }}$ the voltage V across the amplifier input equals E, the pickup e.m.f. Now, if we assume that such a magnetic pickup is used to reproduce from a constant amplitude record, E (the pickup e.m.f.) is directly proportional to the frequency $f . E$ is rising at a rate of $6 \mathrm{~dB} /$ octave over the whole frequency range and therefore V will also rise at the same rate up to $\int_{\text {mage }}$ and then turn "flat" above it. This is shown in Fig. 4 for the case when $R=65 \mathrm{k} \Omega$. By analogy with piezo-electric pickups, $65 \mathrm{k} \Omega$ loading would be termed high-impedance loading, because the audio range lies entirely in that region of the curve where the amplifier input voltage is equal to the pickup e.m.f. (which is proportional to frequency). Low-impedance loading is of no practical interest ${ }^{*}$, but intermediate impedance loading is practicable ${ }^{2}$ and in this case $f_{\text {mag }}$ is made 2100 Hz .

If Fig. 2(b) is now compared with Fig. 4 it is seen that they are identical in most respects, particularly in having the response $V \propto f$ over the whole audio spectrum. Both curves apply only to pickups on constant amplitude recordings. This means therefore

[^5]
(a)

(b)

Fig. $3(a)$. Equivalent circuit and (b) fiequency response of magnetic pickup. $f_{\text {mag }}=\frac{(R+r)}{2 \pi L} H .(R$ in ohms, L in henries).
that an ideal ceramic pickup when velocity loaded ($C=800 \mathrm{pF}, R=10 \mathrm{k} \Omega$) will require exactly the same frequency correction as an ideal magnetic pickup ($L=500 \mathrm{mH}$, $R=65 \mathrm{k} \Omega$). This should make clear the use of the term "velocity loading" as applied to a ceramic pickup.

If we now wish to specify the gain/ frequency characteristic of amplifiers for reproducing constant amplitude records using the pickup configurations shown in Figs. 2 and 4, we find that a "flat" amplifier characteristic is required for Fig. 2(a) and this is shown in Fig. 5(a). Both 2(b) and 4 require a gain falling at a slope of -6 dB / octave over the whole audio spectrum as shown in Fig. 5(b). (See last section for note about bass lift below 50 Hz .)

R.I.A.A. Recordings

Up to now we have considered constant amplitude recordings only and this is now a convenient point to introduce the complications caused by the real R.I.A.A. recording characteristic. The R.I.A.A. characteristic is usually given as a gain/frequency curve required to correct a perfect magnetic pickup with a high-Z load. Fig. 6(b) shows this curve. The author's preference, when considering ceramic pickups, is the replay characteristic for a high-Z loaded ceramic pickup which is given in Fig. 6(a). This form of the curve emphasizes the close approximation of the R.I.A.A. characteristic to constant amplitude recording apart from the 12.5 dB "coggle" in the curve between 500 and 2121 Hz . Thus it might be loosely assumed that an amplifier to replay from a ceramic pickup would require a gain/frequency curve like Figs. 6(a) or 6(b) depending on the loading employed. However, the historical development of piezo-electric pickups comes into play here, and as mentioned above the tradition of expecting piezo-electric pickups to be played into a high impedance load dies hard so we have the situation that almost all piezo-electric pickups have built-in compensation.

Fig. 4. High-resistance loading for magnetic pickup playing a constant amplitude recording. ($R=65 \mathrm{kS}, L=500 \mathrm{mH}$, $f_{\operatorname{maa}}=20 \mathrm{kHz}, E \propto$ fover cudio range.)

Fig. 5. Amplifier gain characteristics; (a) for high-Z piezo pickup (Fig. 2(a)) and (b) for low-Z piezo (Fig. 2(b)) and high-Z magnetic (Fig. 4) pickups. Note: These characteristics refer to ideal piezo and magnetic pickups playing constant amplitude recordings.

Fig. 6(a). R.I.A.A. replay characleristic (ideal ceramic pickup with high-Z load) and (b) siandard R.I.A.A. replay characteristic (magnetic pickup into high-Z load).

The 12.5 dB lift in the higher frequencies is provided by built-in mechanical compensation and this means that the pickup can be played directly into a high-impedance "flat" amplifier and give acceptable results. On the other hand, no magnetic pickups incorporate mechanical equalization and so always need the full R.I.A.A. equalization as given by the curve in Fig. 6(b). But as practically all ceramic cartridges have the mechanical compensation the amplifier gain/frequency characteristic would have to be like Fig. 5(a) or 5(b), depending on the loading employed, not $6(a)$ or $6(b)$.

As nothing can be done about the built-in mechanical compensation, additional electrical equalization must be added to an existing amplifier if an attempt is made to "velocity load" the pickup and then play it through an amplifier with full R.I.A.A. magnetic equalization. Despite the mechanical compensation, no basic change in the equivalent circuit of the pickup is needed, the only difference is that the e.m.f. E is a function of frequency, but the pickup is still basically an amplitude sensitive device. I think there is a good case for marketing high-quality ceramic pickups with no builtin equalization, specifically designed to operate into the "magnetic" input socket of pre-amplifiers, whose input impedance is of the order of $50 \mathrm{k} \Omega$.

This should have explained fully the derivation of the three curves in Fig. 5 of ref. 1 where circuits and curves are given for varying degrees of built-in mechanical compensation.

Curve 1-Full mechanical

Curve 2-50\% effective mechanical
Curve 3-Zero mechanical
In this respect Mr. Linsley Hood's Fig. 5 arrangement is more flexible than his Fig. 4 circuit which assumes full mechanical equalization.

Medium-Z loading of magnetic and ceramic pickups

In the original version of the TobeyDinsdale pre-amplifier ${ }^{2}$, an ingenious form of equalization was suggested for magnetic pickups with an inductance of the order of 500 mH . This depended on the concept of splitting the equalization into two separate sections, one providing the treble equalization above 2121 Hz and the other providing the bass equalization below 500 Hz . Treble equalization was obtained by setting $f_{\text {mag }}=$ 2121 Hz and reference to Fig. 5(b) will show that a flat amplifier characteristic is required above $f_{\text {mas }}$ for proper overall equalization. Below 500 Hz amplifier bass lift is required and this was achieved by frequency selective feedback using a virtual earth amplifier (see Appendix 1) where Z_{2} consisted of a resistor and capacitor in series with a time constant of $300 \mu \mathrm{~s}$.

This provides a gain/frequency characteristic as shown in Fig. 7, assuming Z_{1} is resistive. Thus the combination of the two systems provides correct equalization. Pickups with inductances much smaller than 500 mH and/or with high a.c. resistances at 2 kHz cause difficulty with this method.

Fig. 7. Gain/frequency curve of pickup equalization feedback circuit of Ref. 2.

(a)

Fig. 8(a). Principle of equalization for virtual earth amplifier (see Appendix l). No biasing components are shown.

(b)

However, the critics of this system were unduly harsh and it is probable that the majority of stereo magnetic pickups will work satisfactorily with this form of equalization. Tests on the Neat V-70 and the B. \& O. SP2 pickups, which are typical of the moving magnet and variable reluctance type respectively, have shown no decrease at all in channel separation using the E.M.I. stereo test disc TCS 101 when first one channel, then the other, is shorted. In a recent article in Wireless World ${ }^{8}$ it was pointed out that magnetic imbalance of these types of pickup is very low, resulting in a separation of better than 40 dB from this cause alone. Thus any transformer effect (i.e, the current in one coil inducing a voltage in the other) would be of negligible proportions compared to the other causes of crosstalk - which are principally mechanical. Obviously the Decca ffss pickup is an exception since it has a sum and difference coil system, where the common coil would carry appreciable current through a common impedance.

When ceramic stereo pickups are operated into low-Z loads there is no risk at all of worsening the channel separationindeed, some authors believe that low impedance loading improves the damping and hence the transient performance. This idea originated a long time ago^{3}, and as yet no evidence is forthcoming in support of this claim. Reference 3 contains many misleading and contentious remarks, and it is possible that pen was put to paper rather too hastily! Well, low-impedance loading is probably neither much worse nor much better than high-impedance loading, other things being equal, and if the reader will accept the idea of a $100 \mathrm{k} \Omega$ load, or thereabouts, it is very simple to design a circuit providing the necessary equalization. No

Fig. 4. Performance of Fig. 8.
doubt many readers have reverted to highimpedance loading after being dissatisfied with results from their pickup when operated into a magnetic input and the reasons for this should be clear from the above discussion.

However, theoretically perfect equalization with medium- Z loading is possible by adapting the Tobey-Dinsdale system for equalizing magnetic pickups.

Equalization of ceramic pickupsnew method

Suppose we load a 1500 pF pickup with $200 \mathrm{k} \Omega$. The formula by Fig. 1(b) tells us that $f_{\text {cer }}=500 \mathrm{~Hz}$. Frequencies below 500 Hz suffer an attenuation of $6 \mathrm{~dB} /$ octave as shown on Fig. 1(b). Suppose also that we use a feedback circuit providing an amplifier gain curve as shown in Fig. 7, which gives a rising gain below 500 Hz . Combining these two circuits will provide a flat overall frequency response-which is what is required for a fully mechanically compensated ceramic pickup playing R.I.A.A.
recordings. The virtual earth amplifier as used in reference 2 works very satisfactorily when the input circuit is modified as shown in Fig. 8(a) which shows the outline system and (b) giving the detailed modifications. With a Sonotone 9 TAHC C_{2} and R_{8} were kept as $0.005 \mu \mathrm{~F}$ and $47 \mathrm{k} \Omega$, and the only alteration was to include the preset R_{4}. The performance of the adapted circuit is shown by the full line in Fig. 9. Should the mechanical compensation not be fully effective the circuit can be arranged to give the full 12 dB lift by reducing the value of R_{4} to $50 \mathrm{k} \Omega$, which raises the turn-over frequency $f_{\text {cer }}$ from 500 Hz up to 2000 Hz as shown by the dashed curve in Fig. 9. It is obvious that any degree of mechanical compensation can be allowed for by tweaking R_{1}. This can be done quite easily by ear. If $200 \mathrm{k} \Omega$ is inconveniently high, the pickup can be shunted with extra capacitance, say 1000 pF , so allowing R_{4} to be reduced, for the same product of $C_{1} \times R_{\mathbf{4}}$. It is convenient to arrange for the feedback circuit to have its turnover frequency at 500 Hz because then inadequate mechanical compensation can be easily adjusted for. If it is known that the pickup is fully compensated any convenient value for $C_{1} \times R_{4}$ may be chosen.
Any feedback type pre-amplifier stage can be easily modified to provide correct ceramic pickup equalization using the basic method just discussed. The type discussed in Appendix 2 has appeared as the Dinsdale Mk. II^{4}; this pre-amplifier can be modified to give excellent equalization as shown in Fig. 10. Another popular more recent Wireless World pre-amplifier design is the Bailey circuit ${ }^{5}$, which also can be improved by greater attention to the equalization requirements. This design can easily be modified by, say, using the "Disc 1" position for a ceramic pickup and "Disc 2" for the magnetic. The circuit for the ceramic pickup will now appear as shown in Fig. 11. The circuits in both Figs. 10 and 11 are capable of the adjustment range as shown in Fig. 9 for the simpler virtual earth circuit. Each has an additional control R_{3} of $10 \mathrm{k} \Omega$ to preset the overall gain to a suitable level for the particular pickup. Using this form of equalization for pickups, it is doubtful whether the'performance of the modified Dinsdale Mk. II is in any way inferior to the modified Bailey because the feedback circuit in the Dinsdale Mk. II does not have a falling impedance with rising frequency any more. Instead, the impedance flattens off at about $9 \mathrm{k} \Omega$ and does not shunt the transistor load impedance excessively at high frequencies. The same is true for the other two amplifier circuits, of course.

Equalization of ceramic pickups: alternative circuits

Circuits requiring no internal modifications to the pre-amplifier fall naturally into two main groups:
(1) add-on high input impedance f.e.t. and boot-strapped circuits
(2) circuits adapting magnetic-cartridge inputs by "velocity loading" the pickup and decompensating for the mechanical compensation.

I shall confine the discussion to the second

Fig. 10. Modified Dinsdale Mk. II for ceramic pickup equalization. Switch position 2 is now labelled ceramic pickup R.I.A.A. I.p. Note: Do not operate this circuit with C_{10} shorted and R_{3} set to less than 3500Ω or motor boating at 1 Hz might occur. To be safe, raise C_{2} to $20 \mu F$ or more. $C_{t}=C_{p}+C_{A}+C_{\text {leads }}$ etc.; choose C_{A} to make $C_{t} \approx 1500 \mathrm{pF}(\pm 150)$; $R_{18} \cdot C_{10}=3000 ; R_{18} / R_{17}=12.4 ; C$ in $u F ; R$ in $\Omega ; R_{2}-$ set $f_{\text {cer }} ; R_{3}-$ set gain.
 $R_{2}-$ sel feer $: R_{3}-$ sel gain.

Fig. 12. Circuit for "velocity" loading and decompensating a ceramic pickup.
group since adequate information is already available for the first group.

One of the best known circuits for decompensating the mechanical equalization is due to J. Walton (Fig. 12). This is an ingenious circuit. It provides "velocity loading" of the pickup over the whole audio frequency range but the effective load impedance for the pickup is higher at low frequencies than at higher frequencies, therefore a relatively larger signal is produced at low frequencies than at high. This circuit allows the Decca Deram to be connected successfully to a fully R.I.A.A. compensated magnetic input of $R_{\text {in }}$ approxi-

Fig. 13. Circuit for "velocity" loading and decompensating Sonotone 9 TAHC.
mately $47 \mathrm{k} \Omega$ or so. An alternative circuit, which was provided in a private communication, for decompensating the Sonotone 9 TAHC pickup is shown in Fig. 13, and although seemingly very different from Mr . Walton's circuit, achieves the same objective.

These circuits probably function quite well, but there is the possibility of a big build-up of errors in the mechanical compensation, the decompensation and the amplifier equalization characteristic. By comparison the circuit of Fig. 8(a) is very simple, gives less risk of accumulated errors, and allows adjustment for degrees of
mechanical compensation. The one main shortcoming of this simple circuit is the lack of loop gain to stabilize gain at low frequencies. In this respect the Dinsdale Mk. II and Bailey pre-amplifiers are superior. Rumble filtering is a good feature to include as well. If the Dinsdale design of main amplifier is used, or the Bailey amplifier with the recent modification ${ }^{6}$, then rumble filtering is not so necessary since these amplifiers have a built-in high-pass characteristic.

Further notes

(1) It may have occurred to the reader that an even simpler form of equalizer is possible, consisting of a virtual earth amplifier with just a capacitor in the feedback circuit as in Fig. 14. Though superficially very attractive, this circuit is not very satisfactory owing to the shunting effect of C_{2} on the transistor load resistor at high frequencies, and the difficulty of adjusting the compensation. Stabilization of low-frequency gain would be desirable, so requiring a resistor shunting C_{2} and perhaps C_{1}, thus making the circuit no simpler than the adjustable circuit of Fig. 8. On the other hand, the simple circuit of the form of Fig. 8 is eminently suitable for a multi-transistor virtual earth amplifier and is a simpler way of achieving proper ceramic pickup equalization than Mr. Linsley Hood's circuit (Fig. 5 of ref. 1).
(2) Pickups of very low or very high outputs may cause difficulty through lack of gain, or overloading and some further notes might help to provide solutions for particular problems.
Circuits in Figs. 10 and 11 are not likely to be troubled in this way owing to the presence of the adjustable R_{3}. If the pickup output is low, R_{3} may be increased up to $50 \mathrm{k} \Omega$ max., which might then require $R_{2}=0$. An alternative method to increase the gain is to alter the values of the resistors and capacitors in the feedback circuits (R_{18}, R_{17}, C_{10}) in Fig. 10; or the equivalent ones (R_{4}, R_{5}, C_{4}) in Fig. 11. The ratios between the component values must be maintained, however, as given by the formulae at the side of each diagram. In generals, raising the resistor values increases the gain and lowering them reduces it. The equalization will not be affected by such changes.

The circuit in Fig. 8(b) is not quite so simple, as no one component can be varied easily to alter the gain. Shunting the pickup with a capacitor will neither raise nor lower the overall gain, because the attendant alteration of R_{4} to preserve the same $f_{\text {cer }}$ will exactly neutralize the change. However, if a series capacitor is used and a shunt capacitor as well to keep the same effective source capacitance of 1500 pF , effective gain reduction can be achieved without raising R_{4} at all (Fig. 15). For $C_{r o t}=1500 \mathrm{pF}$ with $C_{p}+C_{\text {strays }}=800 \mathrm{pF}, C_{s}=390 \mathrm{pF}$, $C_{1}=1200 \mathrm{pF}$, gain is reduced by a factor of 3 compared with the gain when C_{5} is not used, and the pre-amplifier would not be overloaded by operating from a pickup with an output of 1.25 V max !

An alternative method is to alter the values of the feedback components (C_{2} and

Fig. 14. A simple hut impracticatle

Fig. 15. Curbing high output pickups by including series and shunt capacitance. Effective capacitance value for calculating $f_{c e r}$ is $C_{\text {tot }}$ which $=\frac{\left(C_{p}+C_{\text {strays }}\right) \times C_{s}}{C_{p}+C_{\text {strays }}+C_{s}}$. R_{8} in Fig. 8(b)). In general decreasing R_{8} lowers the gain, and increasing R_{8} raises it. However, this causes a change in the magnetic pickup gain as well as the ceramic pickup, so it is best avoided.

Finally, the pickup output may be shunted directly with a resistor, R_{3}, which would be connected between the left side of R_{4} in Fig. 8(b) and chassis. To preserve the time constant once more, this resistor would have to be shunted by a capacitor C_{1} larger than normal so that

$$
\left(C_{p}+C_{1}\right) \times \frac{R_{3} R_{4}}{R_{3}+R_{4}}=318 \mu \mathrm{~s}
$$

That is, if R_{3} equals $200 \mathrm{k} \Omega$, and R_{4} is $200 \mathrm{k} \Omega$, thus giving a parallel combination of $100 \mathrm{k} \Omega, C_{p}+C_{1}$ would have to he made equal to 3000 pF or so.

A word of warning, do not attempt to shunt virtual earth amplifiers by putting a resistor between the virtual earth point (see appendix 1) and real earth. The loop gain of the amplifier is reduced, making the circuit more susceptible to transistor gain variations and the gain/frequency curve will be less exact.
(3) Response below 50 Hz . Referring to Fig. 6(a) which shows the replay characteristic for a piezo-electric pickup playing R.I.A.A. recordings, the curve implies that bass lift is recorded below 50 Hz , since, theoretically the replay characteristic should drop off below 50 Hz at $6 \mathrm{~dB} /$ octave. This is probably not done by many recording companies because of the allowable maximum recorded amplitude which is less for the lower frequencies.* Thus a flat gain is probably required below 50 Hz , down to say 20 Hz , below which a fall of $18 \mathrm{~dB} /$ octave to reduce rumble is beneficial. Too few pre-amplifiers include adequate rumble filtering. The author recently has had to

[^6]modify a valve stereo amplifier of a very well known make on account of its extended low frequency response-flat to less than 10 Hz !

On balance it is better to dispense with the luxury of "flat to 20 Hz " and allow the theoretical $6 \mathrm{~dB} /$ octave below 50 Hz (R.I.A.A.) aid the rumble reduction, leaving only $12 \mathrm{~dB} /$ octave to be added elsewhere, say, by a couple of differentiation circuits in series between the pre-amplifier and main amplifier, unless the main amplifier itself has a high pass characteristic.
In principle, the simple equalization circuit of Fig. 8(a) would give a flat response down to zero frequency. This is not true of Fig. 8(b) owing to the limited gain of a one transistor amplifier, and also to the feedback deliberately introduced to give a high pass action. With a high gain amplifier and no anti-rumble feedback, C_{2} would need to be shunted by $560 \mathrm{k} \Omega$ to give a turnover frequency of 50 Hz .

Bass roll-off would not be achieved by putting a capacitor of $0.01 \mu \mathrm{~F}$ in series with R_{4}, although it was this method, in effect, that was suggested recently ${ }^{7}$. Since the 0.01 $\mu \mathrm{F}$ is in series with the pickup capacitance and the pickup capacitance is only 700 pF or so, the $0.01 \mu \mathrm{~F}$ capacitor would have only a 7% effect on the turnover frequency of the pickup in conjunction with the amplifier input resistance. ($f_{\text {cer }}$ would be about 1.5 kHz , and not 50 Hz .)
(4) Magnetic pickups playing into high resistance loads. Manufacturers of magnetic pickups commonly state that their products should be loaded with not less than $47 \mathrm{k} \Omega$. Many reports on magnetic pickups refer to the problem of the pickup inductance and lead capacitance giving a resonant effect on frequencies about 15 kHz to 20 kHz . In the case of pickups with an inductance of about 500 mH it is advisable to use no more than $50 \mathrm{k} \Omega$ since then the Q of the $L C R$ circuit is about 1 which almost entirely suppresses the resonance effect.
(5) The capacitance of the connecting leads to a ceramic pickup are of no consequence since the capacitance simply adds to the source capacitance of the ceramic pickup and does not cause resonance effects.
(Please see p. 80 for Appendix)

REFERENCES

1. J. L. Linsley Hood, "Modular Preamplifier Design", Wireless World, July 1969.
2. R. Tobey and J. Dinsdale, "Transistor High Fidelity Preamplifier", Wireless World, December 1961.
3. Elwin O'Brien, "High Fidelity Response from Phonograph Pickups", Electronics, March 1949.
4. J. Dinsdale, "Transistor High-Quality Audio Amplifier". pt. 1, Wireless World, January 1965.
5. A. R. Bailey, "High-performance Transistor Amplifier", pt. 2, Wireless World, December 1966.
6. K. Clayson, Letters to the Editor, Wireless World, October 1969.
7. F. Jones, "Ceramic Pickup Inputs", Hi-Fi News, January 1969.
8. S. Kelly, Stereo Gramophone Pickups, Wireless World, December 1969.

News of the Month

NASA to close electronics centre

The National Aeronautics and Space Administration announced on December 29th the closing of its Electronics Research Centre at Cambridge, Mass. The decision to suspend operations at the centre was made when planning the future course of the U.S.A.'s space programme over the next decade, when it was also decided to reduce the country's manned space flight programme.

Announcing that the phasing down of work in the Electronics Research Centre would begin at once, Dr. Thomas Paine, the administrator, said "we are simply faced with the hard fact that NASA cannot afford to invest broadly in electronics research as we have in the past".

The Electronics Research Centre was opened in September 1964 and has 850 employees engaged in advanced research in electronics, in aeronautics and space.

Stereoscopic
 television system

Three-dimensional scenes in motion can be viewed on some closed-circuit television
systems with a new live-transmission technique devised at Bell Telephone Laboratories, U.S.A. A 3-D scē̃e is transmitted as a series of slightly different two-dimensional images that convey depth information. At the receiving end, the 2-D images are combined to reconstruct the original 3-D scene. No special glasses are required to see the scene in three-dimensional form.

The basis of the technique is a pair of spherical mirrors, called varifocal mirrors. Because they are constructed of flexible mylar, their centres can be made to move rapidly in and out, from concave to convex shapes, like loosely fitting drum skins.

As the mirror at the transmitting end moves, it reflects portions of the 3-D scene to a short focal length lens. The lens then focuses these different "depth planes" one at a time so that they can be shown on a rear projection screen, recorded by a television camera, and transmitted.

At the receiving end, a television monitor displays the 2-D images. An observer views them reflected from a second moving mirror, which is placed in front of the monitor. The mirror forms an image of each successive view, instantaneously placing it in the correct

One of two gigantic speaker systems manufactured by the Pioneer Electronic Corporation, of Japan, for installation at the Festival Plaza of Expo '70 now under construction at the Senri Hills, Osaka, and due to be opened to the public on March 15th. Each speaker system weighs two tons, and contains 42 speaker units-four 50 cm (20in) diameter 'woofers', twenty-four 20 cm (8in) 'squawkers', and fourteen multicellular exponential-horn 'tweeters'. Each system can handle 400 W of input power.
depth position to reconstruct the original 3-D scene.

Although the technique requires several times more bandwidth than broadcast television it has potential applications for 3-D data transmission in specialized scientific and medical fields. Applications to broadcast or closed-circuit entertainment is limited by a phenomenon called "phantom imaging" associated with the varifocal mirrors. Because of this, objects in the foreground of a 3-D scene do not, as they should, totally obstruct those in the background.

Lightweight military navigation system

An airborne i.l.s. /v.o.r. equipment, type AD280, which has been introduced by Marconi, provides complete instrument landing facilities and a v.h.f. omnidirectional range in a single unit and is primarily intended for light strike aircraft and helicopters.

All components will be tested comprehensively and 'burned in' both at the supplier's and at the Marconi factory, during manufacture. In addition, the units will all undergo extensive automatic testing, both at the sub-assembly stage. and as completed units.

The complete unit consists of a number of plug-in returnable modules, completely encapsulated and sealed to prevent both contamination and accidental physical damage during their life. These modules are said to have a calculated m.t.b.f. greater than the operational life of most aircraft. The m.t.b.f. for the complete assembly has been calculated conservatively at 4000 hours, but this figure is expected to be exceeded comfortably in service.
The complete AD280 system consists of a chassis unit with six modules, and was designed by the Aircraft Radio Corporation of America and will be manufactured under licence by Marconi.

I.T.A. report

The engineering section of the annual reports and accounts of the Independent Television Authority for 1968-69 records the work undertaken in equipping u.h.f. stations for colour transmission and lists the 26 main stations which are being brought into service between 1969 and 1972. In addition there will be a large number of u.h.f. relay stations. During the year under review the Authority (which supplies and operates the transmitters used by the programme contractors) has completed its plans for 47 v.h.f. stations. These stations serve over 98% of the country's population.

V.H.F. YIG modulator

A yttrium iron garnet (YIG) modulator depends on the Faraday effect in a magnetic material, in which the plane of polarization of a beam of plane polarized light is rotated as it propagates through a medium magnetized parallel to the direction of the light.

Using this property of YIG, R. W.

Cooper and J. L. Page of Mullard Research Laboratories have modulated a light beam with the signal from a television camera. The beam is focused on to a photodetector, the output signal from which is amplified and fed to a television monitor.

In the device a rod of single crystal material is mounted in a transverse bias magnetic field provided by two small permanent magnets. A small coil wound on the rod and fed with the drive signal induces a component of magnetization parallel to the light direction. This results in a rotation of the plane polarization of light traversing the rod. This polarization modulation is converted to amplitude modulation by passing the beam through a polarizer. Whilst the bandwidth required by the TV signal is only 5 MHz , the modulator has been tested at frequencies up to 100 MHz , and bandwidths of several hundred MHz are possible. A tungsten lamp is used as a source of radiation. Lasers operating in the near infra-red may also be modulated using this device.

New year honours

There were but a few men in the electronics and radio world among those receiving honours in the New Year list. They included.

C.B.

H. E. Drew, F.I.E.R.E., director general of quality assurance, Ministry of Technology.
C.B.E
R. J. Clayton, O.B.E., M.A., F.I.E.E., technical director, the General Electric and English Electric Companies Ltd.
D. Gabor, F.R.S., professor of applied electron physics, Imperial College, University of London.

O.B.E.

L. F. Mathews, F.I.E.R.E., director and general manager (Midlands), Associated Television Network Ltd.
R. J. P. Middleton, engineer, Directorate of Electronics Production (Radar), Ministry of Technology.

M.B.E.

T. E. Allon, M.I.E.R.E., engineer-in-charge, Caversham, B.B.C.
J. D. V. Lavers, head of maintenance section, I.T.A. Engineering Division.
S. Marsden, senior executive engineer, Post Office Telecommunications Headquarters Research Branch.

B.E.M.

D. P. Scott, unit supervisor, Associated Semi-conductor Manufacturers Ltd., Mullard Southampton Works.

Scotland \longleftrightarrow I.E.A. air trip

Our associate journal, Instrument and Control Engineering, has organized a special air trip to the I.E.A. Exhibition (May 11-16) for engineers living in Scotland. To quote I.C.E. "We will get you to Olympia and home again with the minimum fatigue and the greatest expediency". The cost is the same as the normal air fare $£ 196 \mathrm{~s}$. Interested

Granada Television Network officially took possession of the first of its fleet of colour television outside broadcast vehicles on 2nd December. This is a 5-camera mobile unit which has been designed and built by EMI to meet the special programme requirements of Granada. The picture shows the view from the sound control position into the production control area.
readers should contact Instrument and Control Engineering at Dorset House, Stamford Street, London, S.E. 1.

Hearing Aid Council

The Hearing Aid Council, created by the Hearing Aid Council Act 1968, came into being on December 29th. Under the Act "all dispensers of hearing aids provided commercially, and persons employing such dispensers" must register with the Council before June 29th this year. The new Council, of which Harold Campbell is chairman, is required to advise on the training of persons engaged in such business, and to regulate trade practices. All enquiries and requests for application forms for registration should be made to the Hearing Aid Council, 16 Mumford Court, Lawrence Lane, London E.C.2.

Colour tube factory

Thorn Colour Tubes Ltd. have acquired a 25 -acre factory site on the Gillibrands Estate at Skelmersdale New Town in Lancashire for the construction of a pur-pose-built factory at a cost of $£ 10 \mathrm{~m}$ for the mass production of Mazda colour television picture tubes. It will be one of the largest purpose-built colour tube factories in. Europe and production capacity will initially be 300,000 tubes a year, rising as the market increases. Thorn Colour Tubes is jointly owned by the Thorn Group and RCA.

More help for instrument makers and users

Extensions to the Siraid instrument enquiry service are announced. The service is operated by the British Scientific Research Association, from its headquarters at Chislehurst, Kent. For twelve years Siraid has been providing enquirers throughout the world with information on where to obtain the measuring instruments and controllers they need.

Now Siraid will give enquirers information on where to obtain assistance in prototype design and manufacture for one-off or small-batch production. Siraid will also signpost the firms that specialize in four other areas-maintenance and servicing of instruments, environmental testing and calibration, consultancy, and hire of instruments.

A new register of firms which can carry out these types of work has been prepared by Siraid and made readily accessible on punched cards.

Further information on these new extensions, or on other Sira information services, is available from J. W. Ede, Sira, South Hill, Chislehurst, Kent BR7 5EH (Telephone 01-467 5555).

Radio aids for
 new cargo vessel

The Amra, the first of six new cargo vessels on order from Swan Hunter Shipbuilders Ltd, for the British India Steam Navigation Co. Ltd, is fitted with a wide range of Marconi Marine communications equipment and navigational aids, including two transistor radars with full inter-switching facilities. The main communications installation is based on a 'Commander' single-sideband transmitter and its associated receiver, which will provide a medium- and high-frequency radiotelegraph service as well as a single- or double-sideband radiotelephone service in the intermediateand high-frequency bands. V.H.F. radiotelephone requirements are met by the installation of an Argonaut transmitter/receiver, while aids to navigation include a Lodestar fully automatic direction-finder, a Seagraph III recording echosounder and a Metron III visual depth indicator. The two radars fitted in the new vessel are a 16 -inch display Raymarc 16 with true motion facilities, and 12 -inch display Raymare 12HD high-definition radar.

low-noise recording tape

quiet as a mousel

THE RANGE OF EMITAPE AFONIC LOW-NOISE TAPE

99
LONG PLAY
50% longer recording time specially designed for multi-track recorders - pre-stretched polyester base film of super strength.

100
DOUBLE PLAY
Twice the recording time for a given size of spool - the perfect film for low speed, multi-track recorders - superflex polyester base film.

300
 TRIPLE PLAY

P/aximum playing time on spools up to $5^{\prime \prime}$ dia,extended dynamic range - specially suitable for battery operated recorders-extra tensile polyester base.

'Everything looks better on Prowest'

This is the enviable reputation Prowest Monitors have earned with the top Engineers of the Television Industry. Consequently we are able to offer you one of the finest ranges of Video Monitors, available to Industry, for data display and other closed circuit applications, with a reliability which is seldom equalled.
Shown above is the attractive 28 cm . Monitor, the smallest of our new 3A Range, which amongst its many superb features offers ALL SILICON SOLID STATE CIRCUITS - NATURAL CONVECTION COOLING - BLACK LEVEL CLAMP INTERNAL/EXTERNAL SYNC. CONTROL IMPROVED PICTURE STABILITY CIRCUITS.
The new 3A Range is also available with 36 cm . and 47 cm . screens and all are offered at a remarkably reasonable price! Circuit modules in this series of Monitors are interchangeable allowing for maximum servicing flexibility with minimum of spares stocking.

If vour work involves closed circuit television or data display equipment you ought to know all abqut the Prowest range of display units. Telephone or write now for full details and, while you're at it, ask about our All-Solid-State Video Switching Equipment

Graphical Symbols

Principles of their formation and use

by S. W. Amos,*B.Sc., M.I.E.E.

One of the characteristics of technical literature is the extensive use made of diagrammatic, tabular, mathematical and non-textual presentation. It has often been said that a good diagram is worth hundreds of words: this is, in fact, an understatement because a diagram can present technical information which is almost impossible to put into words or which would make tedious reading if so expressed. This is particularly true of the block diagrams and circuit diagrams of electronics and telecommunications. Clarity in such diagrams is therefore as important as in text and the choice of symbols, their arrangement and orientation, and the layout of the inter-connecting lines should be chosen with as much care as the selection of words, syntax and sentence length in text. A clear diagram cannot be made of symbols the meanings of which may not be understood by the reader.

Diagrams are intended to facilitate the understanding of equipment or a piece of circuitry; block diagrams in broad general terms and circuit diagrams in more detail. Both types of diagram represent only electrical or electronic abstractions and use graphical symbols to portray the essential electrical characteristics of the components. Ease of reading is vital to aid understanding of a circuit and the layout of a diagram should be chosen with this as the primary aim. It follows that the arrangement of the symbols on the diagram does not necessarily agree with the physical disposition of the components in the equipment itself. Indeed, for complex equipments, particularly those using detached representation (described later) there is usually little correlation between circuit diagram and equipment layout. Similarly, the symbols, which represent electrical behaviour, need bear no resemblance to the physical form of the components.

Symbols represent electrical behaviour . . .

A good example of a circuit symbol is that of the triode shown in Fig. 1. This shows that the valve has a grid interposed between an anode and a cathode, and it is easy to sketch electron paths passing - Technical Publications Section, B.B.C.

Fig. 1. Symbol for a triode valve. Fig. 2. A simple switch. Fig. 3. Symbol for a loudspeaker. Fig. 4. An electrostatic loudspeaker.
through the meshes of the grid. The circuit symbol can thus help in explanations of the behaviour of a thermionic valve and is used in this way for teaching purposes. The symbol is (a) simple, (b) easy to draw and (c) illustrates the electrical function of the component needed. These three attributes are essential in a good graphical symbol.

. . . but not the physical form of components

The symbol of Fig. I can be used to represent any kind of triode valve, from a transmitting type four feet high with an air-blast-cooled anode to a miniature acorn type. The symbol thus does not depend on the physical form of the component.

Fig. 2 gives the symbol for a simple make-and-break switch. This can be used to represent a large number of different physical forms. Any urge to invent a symbol for every new physical form of switch should be resisted. It would soon become impossible to devise further simple symbols, and if complex symbols are used, unless they are formed in some obvious systematic manner (such as the modular system described later), it is difficult to remember them, and frequent annoying and time-consuming searches in reference books are necessary. When this point is reached the symbols have ceased to be useful.

It is easy to say that a graphical symbol should represent electrical behaviour or characteristics, but is it always possible to find a simple way of doing this? In particular, can the meaning of the symbols be made obvious? The triode symbol of Fig. 1 is good because its meaning is instantly recognizable. Other characteris-
tics, however, are not so easy to portray, and the symbol then often becomes a simplified and idealized representation of a particular form of component which has the characteristics required. For example, the symbols for a simple make-and-break switch, for a loudspeaker and for relay contacts, all resemble particular forms of component. Similarity to familiar hardware aids recognition, of course, but has the disadvantage of suggesting that symbols represent components rather than their characteristics. For example the loudspeaker symbol (Fig. 3) resembles a sectional view of a moving-coil loudspeaker, and it is an easy step from this to assume that the symbol represents a moving-coil loudspeaker; the question that then arises is, what are the symbols for other types of loudspeaker, e.g., an electrostatic type which has an entirely different shape of cross-section? In fact, of course, Fig. 3 represents every possible type of loudspeaker; if it is necessary to indicate that a loudspeaker is electrostatic, we can add the symbol for capacitance to the loudspeaker symbol as in Fig. 4.

It follows from what has been said that a graphical symbol should not resemble the physical appearance of any particular type of component which has the characteristics represented by the symbol. This is a counsel of perfection and few of our graphical symbols satisfy it. Two which do are the valve symbol and the zigzag symbol representing resistance.

Most symbols represent the electrical characteristics of particular classes of component such as keys, transistors or transformers, but there are a few more general symbols which represent a property to be found in a number of different classes of component or even in wiring. Obvious examples are the symbols for resistance, capacitance and inductance. If, for example, the self-capacitance of an inductor is used to tune the inductor, this capacitance should be shown on the circuit diagram by the capacitance symbol. To indicate that the capacitance is not that of a separate capacitor the leads to the symbol can be shown in broken lines or an explanatory note can be added. Such a symbol would not, of course, have an associated component reference because it does not represent a separate component. Similar situations arise when
the inductance of conductors or the resistance of windings plays a vital part in circuit operation.
Thus the zigzag symbol (or the I.E.C. \dagger rectangular equivalent) does not signify simply a resistor: it should be used to represent any resistance which is made use of in the circuit. For example, it can be used in an equivalent diagram, such as that shown in Fig. 5, to represent the internal resistances of an active element.
A problem arises when a component is used for a purpose quite different from that suggested by its normal graphical symbol, e.g. when a reverse-biased junction diode is used as a voltage-dependent capacitance for tuning purposes. Should the symbol in parallel with the inductor symbol be for a capacitance or a diode? In fact it seems to be generally accepted that the diode symbol should be used, but that a capacitance symbol should be placed nearby, as in Fig. 6, to show that the diode is in practice behaving as a capacitor. It is true that the diode suggests damping or detection rather than tuning but. if the component breaks down, at least the service man looks for the right component-a diode.

Symbols constructed of modules

Fig. 1 is an excellent example of the technique of building up symbols by assembling symbol elements-the modular approach. The triode symbol is made up of the symbols for heater, cathode, grid and anode enclosed by an envelope. These elements can be grouped to form symbols for a wide variety of thermionic valves. From five symbol elements it is possible to produce perhaps as many as a hundred symbols for different types of valve. Here the complexity of a symbol is little hindrance to our understanding of it because it contains only five types of element, all obvious in meaning. Other symbols, similarly built up of elements, are those for switches, keys, relays and semiconductor devices.

A virtue of the modular system is that reference books do not need to list all the possible permutations of a particular group of elements. It is necessary for them to give only the symbols for all the elements and a few typical examples of assemblies of elements.

Block symbols can similarly be made up of standard elements. For example,
\dagger International Electrotechnical Commission.

Fig. 5. Equivalent circuit for a transistor in which the symbols do not represent resistors and capacitors but internal resistance and capacitance.

Fig. 6. Symbol for a reverse-biased junction diode used as a capacitance.

Fig. 7(a) gives the block symbol for an amplifier. To this we can add a symbol representing a band-pass filter thereby showing, for example, a band-pass, i.f. amplifier (b). By adding the arrow representing variability, we obtain symbol (c), representing an i.f. amplifier with manual gain control. Finally, by adding the filled-in rectangle representing automatic control to the tail of the arrow, we obtain symbol (d) for an i.f. amplifier with automatic gain control. An alternative to Fig. 7(d) which might be more useful in a block diagram of a receiver is that shown in Fig. 7(e): this has the a.g.c. line in place of the arrow and the line can be shown as originating at the detector.

We can distinguish the following three types of module which can be used in making up symbols:
(a) What might be termed basic or general symbols-a good example is the capacitance symbol. This can be used in its own right, but also as a component of another symbol as in the case of an electrostatic loudspeaker (Fig. 4). (b) Symbol elements. These are symbols for the essential parts components. They cannot be used on their own and good examples are those for heater, cathode, grid and anode of thermionic valves.
(c) Qualifying symbols. These also cannot be used on their own but are added to other symbols to increase the information conveyed. Examples are the arrow representing variability (Fig. 7c), the three sine waves representing radio frequency and the filled-in square representing automatic operation (Fig. 7d).

The technique of producing any required symbols by assembling standard elements and qualifying symbols is most useful, but the temptation to add unnecessary detail should be resisted. There is little point in indicating on a symbol that the device has mechanical linkages, that gain is adjustable in steps, or that control is by a double-acting pneumatic device, if the circuit diagram can be read and understood without these embellishments. One of the best aids to clarity is simplicity, and there is a lot to be said for circuit diagrams composed largely of general symbols.

There is, however, an exception to this general statement. Although the primary purpose of circuit diagrams is to help to give an understanding of the way in which equipment works, they are also extensively
used today as an aid to servicing, i.e. to help in the location of faults and the subsequent repairs. To this end, it is common practice to include more information on the diagram than is needed to understand the circuit operation. The range of qualifying symbols now available allows the information given to be increased to almost any degree. Explanatory notes can be added to provide information which cannot conveniently be conveyed by symbols, but the use of wording introduces the language complication discussed later.

Symbols can be split

To improve legibility of circuit diagrams, it is common practice to split the symbols for multi-part devices, such as switches, relays, keys, multiple valves and integrated circuits, and to place the symbols for the separate parts in positions on the diagram which give the simplest and clearest layout. Thus the symbol for a relay with six contact units may be divided into seven parts and the coil symbol and the individual-unit symbols may be located in widely separated positions. This technique is known as detached representation. A familiar example of detached representation is that the symbol for the on /off switch of a receiver or amplifier is not usually shown near that for the volume control even though these are ganged physically. Similarly the symbols for the sections of a ganged tuning capacitor are usually shown near the circuits with which they are associated and not necessarily near each other. Detached representation greatly simplifies diagram layout and legibility but introduces the problem of indicating which symbols are mechanically associated.

There are a number of ways of solving this problem. In telecommunications, the most usual method for a relay is to use a code, such as $\mathrm{ABC} / 6$, in which the letters can indicate the circuit function of the relay. The figure in the denominator of the fraction indicates the number of contact units on the relay and the contact symbols are designated ABC-1, ABC-2, etc. Part of a diagram using detached representation is given in Fig. 8.

Distinction between make and break contacts

The contact units of relays are often of the change-over type and if so the contact springs can be selected to give a make or

Fig. 7. Stages in the development of a block symbol for an i.f. amplifier with a.g.c.: (e) is an alternative to (d).

Fig. 8. Detached representation used in the circuit diagram of sound studio equipment. This is only part of the diagram and all the contact units of the five relays are not included. Moreover, the winding for relay $R P$ is not shown.

TABLE
Internationally recognized Letter Symbols

Component references		General symbols		Units		Prefixes	
Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning
$\begin{aligned} & C \\ & G \\ & L \\ & M \\ & R \\ & Z \end{aligned}$	capacitance generstor inductance motor resistance impedance	$\begin{aligned} & f \\ & h \\ & s \\ & t \\ & t^{\circ} \\ & i \\ & 0 \end{aligned}$	frequency hour second time temperature wavelength phase angle	A dB F H Hz v w S)	ampere decibel farad henry hertz (cycles per second) volt watt ohm	T G M \mathbf{k} \mathbf{m} $\prime \prime$ \mathbf{n} \mathbf{p}	$\begin{aligned} & \text { tera }\left(10^{12}\right) \\ & \text { giga }\left(10^{9}\right) \\ & \text { mega }\left(10^{6}\right) \\ & \text { kilo }\left(10^{3}\right) \\ & \text { milli }\left(10^{-3}\right) \\ & \text { micro }\left(10^{-6}\right) \\ & \text { nano }\left(10^{-9}\right) \\ & \text { pico }\left(10^{-12}\right) \end{aligned}$

break action when the relay coil is energized. It is essential on circuit diagrams to indicate which contacts are made and which broken by energizing the coil. An internationally observed convention for distinguishing between the two types of contact is to draw the symbols for all contact units in the positions they take up when the relay coil is not energized, i.e. as they would be with all sources of power removed from the equipment. Thus make contacts are shown open and break contacts closed.

This means of identification is quite satisfactory on carefully drawn diagrams but in the United Kingdom the distinction between make and break contacts is further emphasized. A make contact is shown in line with the lead to the moving spring as shown in Fig. 9(a) and a break contact displaced from the line of the moving spring as shown at (b). By combining diagrams (a) and (b) the symbol for the changeover contact (c) is obtained.

International standardization

Most block symbols represent either processes or apparatus (or sections or

[^7]stages of apparatus) and there is a school of thought which maintains that such symbols need consist only of a simple outline containing suitable wording. Thus an inverting amplifier, for example. may be represented as in Fig. 10 (a) or (b). Such symbols have the merit that their meaning is obvious, provided that the reader is familiar with English. The tendency is to avoid wording on graphical symbols, so that they can be understood by any technician no matter what his language. Only in this way is it possible to achieve international standardization of graphical symbols.

Such standardization is desirable not merely to facilitate the exchange of technical information between countries, but also for the utilitarian reason that it saves time and effort in drawing offices of manufacturers who export technical equipment to a number of countries. Substantial progress to this end has been achieved, and the electrical and electronics symbols now recommended by B.S.I. \neq are 99% in agreement with those published by the International Electrotechnical Commission, the body responsible for international standardization of the symbols.

It is preferable, therefore, to use internationally known symbols rather than wording to make the meaning of diagrams clear. The use of letter symbols can also

[^8]
(a)

(b)

(c)

Fig. 9. Conventional symbols for (a) a make contact unit, (b) a break contact unit and (c) a changeover contact unit.

Fig. 10. Two possible block symbols for an inverting amplifier, but the use of wording introduces language difficulties.

Fig. 11. An example of a block symbol using internationally-understood graphical and letter symbols.
help, and a large number of these are standardized throughout the world; a selection of the commonest is given in the table. In addition all the chemical symbols ($\mathrm{Fe}, \mathrm{Cu}, \mathrm{Hg}$, etc.) are used internationally.

By using combinations of recognized letter symbols and qualifying symbols, it is possible to embody much useful information in a block circuit symbol and to maintain its international character. An example is given in Fig. 11. The three qualifying symbols within the square show that it represents a generator of $100-\mathrm{kHz}$ sinusoidal signals.

To summarize:

1. A symbol should be simple, easy to draw and should illustrate electrical behaviour or characteristics.
2. A symbol should not resemble the physical appearance of any particular type of component which has the characteristics represented.
3. Complex symbols should be built up from a limited number of basic symbols, symbol elements and qualifying symbols.
4. Detached representation should be used whenever it simplifies a diagram.
5. Basic symbols together with qualifying and letter symbols should be used in preference to wording.

Acknowledgement

This article is based on experience gained by the author as a member of the B.S. committee responsible for B.S. 3939 and thanks are due to a number of members of the committee for helpful suggestions.

Price increase

Increased production costs have, we regret, necessitated raising the cover price of Wireless World. From the March issue it will cost 3s. 6d.

Some various meanings

by R. W. Cotterhill,* B.Sc., Ph.D., A.Inst.P.

One often hears the word "matching" used in electronics and it is sometimes the case that, although the user has carried out the process which he means by having matched two pieces of equipment, what he has done may not be recognized as matching by a fellow worker whose experience lies in a different frequency range. It is certainly true that some techniques used outside electrical engineering are adopted, without matching, as understood by electronics workers, being in mind, but which nevertheless are just this. It is the author's experience that some confusion does exist in the subject and that the cause lies partly in loose terminology and partly in the fact that the term has two legitimate but different meanings within our subject which are not sufficiently well delineated at times.

We usually meet it first when considering transfer of maximum power from a source to a load, or when reflections are to be avoided on a transmission line, and it is not always pointed out that these two conditions are not necessarily the same. Again, an output transformer is said to be used to match a loudspeaker to an output transistor or valve, and here we are usually carrying out quite another purpose from either of the two mentioned above.

This article considers these cases in a non-mathematical way and also looks at matching from other points of view which lie outside electronics and illustrate the generality of the concepts.

Getting the most out of it

A source of power with internal resistance R_{S} is well known to give maximum power to a load equal to R_{S} but even here confusion has been known to arise. With a choice of load we should make it equal R_{S} but if the load is fixed there is no advantage at all in adding shunt or series resistance at the source in order to make its resistance equal that of the load. This results only in power being wasted in the added resistance, although sometimes if reflections on a transmission line are the problem we do just this, as we shall see.

[^9]There is a way, however, of giving the source an effective resistance equal to that of the load without wasting power and that is by using a transformer. In what follows we shall assume the properties of an ideal transformer, and by this we shall mean one in which the windings have no resistance, the core no hysteresis, and in which there are no eddy currents. All this implies that no power is lost in windings or core and that all power entering the primary leaves the secondary.

Now if a load R_{L} is across the secondary terminals then the ratio of voltage to current here must satisfy $V_{g} / I_{s}=R_{L}$. But the primary voltage V_{p} is N times the secondary voltage, where N is the ratio of primary to secondary turns. Since input and output powers are equal it follows that the primary current is N times less than that in the secondary. Hence the ratio of voltage to current at the primary is N^{2} times that at the secondary and we say that "looking into" the primary a resistance $N^{2} R_{L}$ is "seen". Thus by making N, equal to the square root of R_{S} / R_{L} a load can be presented to the source equal to its own internal resistance and an optimum power match achieved. Notice that if we regard the source-plus-transformer as one unit we have effectively altered the source resistance to equal that of the load but without wastage of power.

The fact that this simple approach is so widely and successfully used indicates the relatively high efficiency of even quite ordinary transformers.

It is not always realised how uncritical is the condition $R_{L}=R_{S}$. If R_{L} differs by even as much as 25% from the optimum, the load power falls by only one or two per cent.

The transformer in our cars

If we make analogies between voltage and force, and between current and velocity, then the products of voltage and the current in phase with it and of force and the velocity of the point of application in the direction of the force each describe a transfer of power. For rotary motion force and velocity are replaced by torque and angular velocity or r.p.m. The engine of a car produces maximum power at a certain value of
r.p.m. and it is thus desirable to allow the engine to run at this speed. We are then faced with transferring this power to the road wheels, and for maximum power transfer we should present the engine output shaft with an optimum load, which is an equal and opposite torque produced at the angular velocity at which the engine provides its maximum power. The road wheels have a much lower angular velocity than that which is required, but demand at the axle a correspondingly greater torque. The gearbox, in conjunction with the fixed-ratio gear on the axle has the property of converting a lower torque at a higher angular velocity to a higher torque at a lower angular velocity. If the gearbox were ideal, and did not waste power in itself, the products of input torque and r.p.m. and of output torque and r.p.m. would be equal, and if the ratio of the number of teeth on the output gear to the number on the input gear were N (assuming for simplicity only two meshing gears), then the torque would be increased N times. The r.p.m. would of course be reduced N times, so the ratio of torque to angular velocity at the output shaft would have been increased N^{2} times over their ratio at the engine shaft. The gearbox acts like a transformer with selectable turns-ratios, by means of which the engine can be presented with something near to its optimum load resistance of torque/angular velocity although that presented by the road wheels changes.

. . . and in our gardens

When we vary the orifice of our hosepipe outlet, we are varying the ratio of backpressure to volume flow, presenting a different load to the source of power. This is the water mains plus the hosepipe, which constitutes part of the internal resistance of the source. A hosepipe without nozzle gives maximum water-flow (current) but it almost falls out of the end with a low terminal "voltage". A finger over the end can however provide the means for sending a reduced flow high into the air. We are not often concerned with obtaining most power in our jet, (except perhaps for dislodging dirt quickly when washing the car) but a properly designed nozzle can provide an approach
to this match between the source, mains-plus-pipe, and the outside world.

The output transformera confusion of aims

It ought to be the case here of all places that we use a transformer to match the output resistance of the transistor or valve to the load of, say, a speaker, and indeed the much-used term "matching" is often employed here. But if the turns-ratio of an output transformer is examined we are disillusioned. A transistor may have an output resistance of $10 \mathrm{k} \Omega$ and a speaker may be three ohms demanding a turnsratio of about $55: 1$. In fact the ratio may be less than ten.

The transformer is presenting an optimum load to the transistor, but what is being optimized is not now the power transfer; it is the functioning of the transistor. The transformer is providing a suitable load-line, and by suitable is meant one that will allow the current and voltage of the transistor to swing as far as possible over the characteristics. A figure is helpful here; Fig. 1 shows, on axes of collector voltage and current, the familiar $P_{\max }$ curve, a line joining all points for which the product of I_{C} and V_{C} equals the maximum permissible heat dissipation for the transistor.

If we assume for simplicity that the transistor can be "swung" right across the load-line from axis to axis then it is not difficult to show that any load-line drawn tangential to the $P_{\text {max }}$ curve gives the same power output at the same efficiency as any other such line. The intersections of the load-line on the axes are at values equal to twice those where it touches the $P_{\max }$ curve, and in order to permit the swing to be symmetrical this point is the bias point; it has co-ordinates equal to V_{s}, the d.c. supply voltage, and $I\left(=P_{\text {max }} V_{s}\right)$, the bias current. These values are also the amplitudes of the maximum a.c. swings, and so the power output is $\frac{1}{2} V_{s}\left(P_{\max } / V_{s}\right)=\frac{1}{2} P_{\max }$. The d.c. power taken from the supply is $P_{\max }$ and thus the efficiency is 50%.

However, the extremes of the voltage and current swings must not exceed the maxima laid down by the manufacturer and it is here that the transformer provides the

necessary versatility in the setting of a load line which will, as far as possible, satisfy all the desired criteria. It can be seen that in general a load equal to the output resistance of the transistor would be unlikely to do this. For example, take a transistor for which $P_{\max }$ were 100 mW and the output resistance $20 \mathrm{k} \Omega$. The bias point on the $P_{\max }$ curve would be at 44.6 . volts, and to allow the symmetrical swing necessary to obtain most power from the transistor V_{C} would have to withstand twice this, which would usually be much beyond the range of most such transistors.

So we see that using an output transformer has as a general rule little to do with the kind of matching for which $R_{L}=R_{S}$.

Matching a complex load impedance

This can be done on a simple basis for only one frequency at a time. Suppose the load consists of a resistance R_{L} shunted by a reactance X_{L}. (Any complex impedance can be represented by such a combination; the actual values of the equivalent parameters depend, however, on frequency.) The procedure is then to tune out the reactance with a component providing an equal and opposite reactance. Having done this it is necessary to match the source and load resistances as before, using a transformer if required. In fact, since a transformer not only transforms resistance but also reactance in the same way, the tuning may be carried out on the source side of the transformer where perhaps for example a smaller component might do.

When the resistive parts of the source and load (transformed if necessary) are equal, and the reactive parts are equal and opposite, so that they tune out, the match is said to be conjugate.

The seeming handicap of being able to tune and match at only one frequency at a time is not so severe as may be imagined, since in practice the reactive parts of a complex load often become significant only at intermediate or high frequencies and then the transfer of information is usually being carried out at or near one frequency only.

Fig. 1. All load lines tangential to the $P_{\text {max }}$ curve have the properties: (i) Their intersections on the axes are at twice the values of the tangent point, and therefore, (ii) A sinusoidal swing over the whole load line delivers a power to the load of $P_{\max } / 2$. However, a workable line must lie within the limits $V_{C \max } I_{C \max }$.

Transmission lines

When power, usually in the form of a signal, has to be transmitted at frequencies so high that the resulting wavelength is no longer very much greater than the length of line being used, complications of theory arise, but fortunately these are not accompanied by corresponding practical difficulty; in fact usually the apparatus needed for matching is very simple. However, it may be worth while to go over the essentials before actually considering the question of matching itself.
Although the basic physical phenomena are the same, the theories useful in dealing with the transmission of electromagnetic energy at lower and higher frequencies take two viewpoints, and this is not because of an academic tendency to complicate things but quite the reverse.

At what we might call "normal" frequencies (i.e., those not requiring special transmission lines), we look at things from the viewpoint of voltages and currents, and because the lower frequencies are the ones usually met first and also because the theories enabling us to deal with these frequencies are easier, most electronics workers acquire a natural feel for these quantities. At high frequencies, however, it becomes very complicated to try to work in terms of voltage and current, and much easier to think of electric and magnetic fields. (The units for these quantities are respectively volts/metre and amps/metre and this reveals their close relationship with the more familiar voltage and current.) It would be more complicated in fact to work out what happens when a pocket torch is switched on, in terms of electric and magnetic fields, than to go to the other extreme and work with transmission lines in terms of voltage and current, and the chief reason would be because of the irregular shape of the torch circuit. Transmission lines are very simple in shape (e.g., two parallel wires, or a coaxial cable, or a rectangular tube forming what is called a waveguide) and their uniformity makes one of their properties a constant; this is their characteristic impedance, discussed later. It is not intended in this article to reproduce the mathematics of transmission lines, which may be found in text books, but to try to give sufficient discussion of them to relate the aspects of matching in systems using them to those already considered earlier.

In order to focus our attention on something specific let us think of the parallelwire system, especially since this comes closest to the kind of circuit met at lower frequencies. If an a.c. voltage is applied to the end of such a system, then it takes time for this to travel along the wires; not much time because the wave travels at or near the speed of light on most lines. (This is not surprising since light is itself an enormously high-frequency version of the electro-magnetic wave we are considering.) However, even with these speeds the distance travelled by our voltage wave in one of its periodic times may not be far. A $500-\mathrm{MHz}$ wave travels only 60 cm , the sort of lead-length not uncommon in connection of one piece of apparatus to
another, in a time equal to its own period. Assuming an ideal line, just as previously we have assumed ideal transformers and gearboxes, as one which does not itself dissipate power, then if we could examine the ratio of voltage between the wires to current in them at any point as the wave flowed down them, we would find this ratio to be constant (and that therefore the two would be in phase). The quantities themselves would not, of course, be constant; they would be varying at the frequency being transmitted, but they would be rising and falling in phase. Their ratio is what is called the characteristic impedance of the line; it depends on the geometry of the cross section of the line and on the dielectric between the conductors. Lines are manufactured having certain standardized impedances; e.g., $50-\Omega$ coaxial cable.

In terms of fields, the ratio of electric to magnetic field at any point in the space occupied by the wave is equal to the characteristic impedance. This is also true for light waves (and sound waves if we take pressure and velocity as our analogies). If any wave meets a change in the characteristic impedance of the medium in or on which it is travelling some of the power carried by the wave is reflected. The most familiar example of this is the sound echo from a wall; some of the energy does travel into the wall but a great deal is reflected.

Returning to our parallel wires, if these have open ends, or are short-circuited, or indeed are altered in any way, then some fraction of the voltage-current wave returns down the line. It is superimposed on the outgoing wave with the result that an interference pattern is produced on the line; this is usually called a standing wave. The ratio of voltage to current is now no longer constant but varies from point to point along the line and the two are in phase only at certain points separated by half-wavelengths. In between there are points where the voltages subtract and the currents add, and if we regard this point as the input terminals of the system then here we "see" a low resistance. Similarly there are points where the voltages add and the currents subtract and here we would "see" a high resistance. At points between, the combined voltages are not in phase with the combined currents and here the impedance presented to a source of power would be complex. Thus we see that a transmission line on which there is a standing-wave acts like a transformer. Although the discontinuity existing at the end of the line, and giving rise to the reflections (we may now think of this as the load), has its own particular impedance, the source of power connected to the near end is presented with a different impedance. What this impedance is depends on three factors: the load impedance, the length of line between source and load, and the characteristic impedance of the line.

The actual relationship giving the impedance seen at the source is rather complicated and has led to the use of a special chart-the Smith Chart-for quick calculation. It is not proposed to go into this detail, however, which again may be found in the text-books. Instead let us consider various loads and look back along the line,
quoting some easily remembered results as we go.

If the load impedance is Z_{L} then since Z_{L} decides the ratio of voltage to current at the far end of the line, and since any standing-wave pattern repeats itself every half-wavelength, it follows that the impedance presented at any number of half-wavelengths from the load is also Z_{L}.

If the characteristic impedance of the line is Z_{O} then at the intermediate quarterwavelength points it can be shown that the impedance presented is given by $Z=Z_{Q^{2}} Z_{L}$ Thus the reactive character of the load is reversed; if the load were partly capacitive then at these points it will have been transformed into a partly inductive nature and vice-versa. Note also that at these points a short-circuit load will transform into an open circuit and vice-versa, a facility finding many uses in transmission line work.

Matching on lines

The simplest conception of matching is the case where the load is resistive and of value equal to the characteristic impedance of the line. Then no standing wave occurs for no discontinuity is present and the outgoing power is all absorbed in the load. But what about the impedance presented to the source in this case? This turns out to be equal to the characteristic impedance of the line, whatever its length, although this is true only for the ideal line we are discussing. Thus, in this case, for optimum power transfer from the source into the line, which transfers it to the load, we require a source of internal impedance equal also to the characteristic line-impedance. This requirement is not easily met in every case, although within their frequency limitations transformers can be used as previously described. Similarly at the load, unless this were by nature of the correct impedance, some difficulty would be met.

At this point let us look again at the confusions arising in the use of the term "matching". At these frequencies it is used in two connotations. One is to describe the condition when a line is terminated in a load equal to its characteristic impedance, a condition in which there are no standing waves and for which, whatever the length of the line, its input impedance is that of the termination. This condition is known as an identical match. The other is concerned with the meaning more widely used-obtaining maximum power transfer. The first case we have considered; it is ideal, and provided some inefficiency can be tolerated and the transfer of maximum power is not the aim, it can be created with, for example, coaxial resistive terminations in parallel with the actual load, where this is a high impedance, so that the total termination equals Z_{O} In this way reflections at, say, the terminals of an oscilloscope are avoided, although at the cost of sensitivity, and any line length may then be used. Should there be a reflected wave and it be necessary to avoid re-reflection at the source, the output impedance of this can be made equal to the line impedance by the use of added components, a procedure which, as explained at the beginning of this article, has nothing to do with matching for maximum power trans-
fer, and which in fact wastes power.
Finally we take the second case. What can be done when we have a load and a source the impedances of which are not equal to that of the line? Two methods of dealing with this problem are considered.

The first considers the case where we have an experimental arrangement which is permanent in the sense that the source and load impedances are constant and their positions fixed. Here also we must have access to the production of a length of line of chosen characteristic impedance. If both these circumstances prevail then we can make use of the property, already mentioned, of a quarter-wavelength of line, or its equivalent. Suppose the impedance of the source is Z_{S} and that of the load Z_{L}. We obtain a length of line of characteristic impedance Z_{O} equal to the square root of $Z_{S} Z_{L}$ and of length equal to, or equivalent to. a quaiter wave (on the line itself). We have noted that, if this is connected to the load then at the other end an impedance equal to Z_{O}^{2} / Z_{L} is presented; this then becomes $Z_{S} Z_{L} / Z_{L}=Z_{S}$ and so the source is given a transformed load of optimum value. (Note that we could also say that the source impedance has been transformed along the line to $Z_{S} Z_{L}{ }^{\prime} Z_{S}=Z_{L}$.)

There is an exact equivalent here to a well-known form of matching in opticsthe blooming of a lens. A coating of thickness equal to one quarter wavelength of the predominant colour to be transmitted is applied to the lens, and the refractive index of the coating is chosen so that the impedance of the layer to the light wave is the geometric mean of those of free space and the glass. Total reflection from the system is then much reduced.
What can be done now if we have no access to the manufacture of an intermediate line of suitable property, or if we have a load which is different from time to time? We then resort to the most widely used matching device at these frequencies, the matching or tuning stub, and this is often no more than a simple screw which may be inserted to a depth, and at a position in the line, both of which may be varied by the experimenter. In order to understand the function of the stub let us return to the transformation of impedance which is seen as we move away from a load.

Within a distance of half a wavelength the transformed impedance will have gone through a complete cycle of change, with both resistive and reactive parts altering. Now let us imagine moving along the same stretch of line but this time looking toward the source, regarded as inactive and presenting at the other end a "load" of impedance equat to its own internal impedance. This will, of course, have been transformed by the length of line between the source and the section of line we are considering, and as we move over the half-wavelength range the transformed source impedance will vary. Now at some point the resistive parts of the transformed source and load impedances will be equal. This may be thought to be wishful thinking but a numerical case will give an insight.

Suppose we take a $50-\Omega$ line and suppose the source is resistive and 100Ω. At a
quarter wavelength from the source the transformed impedance will have become $50^{2} / 100=25 \Omega$ resistive; this is its minimum transformed value and over the next quarter wavelength it climbs again to 100Ω and this process is repeated cyclically. (Over this traverse there will have appeared in addition a reactance, which in the course of the traverse will have gone through both inductive and capacitive natures.)

Now suppose the load were also resistive and 500Ω. At one quarter wavelength away this will have become $50^{2} / 500=5 \Omega$, climbing back to 500Ω at a half wavelength, and as before these changes will have been accompanied by reactive ones. The ranges of variation of the transformed resistances are seen to overlap and it can perhaps be accepted that this will always be true, even when the source and load are complex, and that a point on the line can be found where the transformed impedances of source and load have equal resistive parts. In fact, because of the cyclic nature of the standing wave, there may be many such points, separated by half-wavelengths.

Having found such a point we can imagine the line to be severed and regard the source and its length of line as an effective source of a certain complex impedance. Similarly the load and its line become an effective load with a complex impedance, the resistive part of which is equal to that of the effective source, but the reactive part of which is not that required to tune out the reactive part of the effective source impedance. All that is necessary now, in order to obtain a conjugate match, is to alter the reactance at this point in the line. This is done by screwing in a tuning stub, which acts predominately as a reactance the value and nature of which depends on the depth of insertion. When it reaches the value required to tune out the reactance present at that point on the line the job is done and the source and load are matched.

Note that there are standing waves on the line-we have used their transforming property to achieve a match-but there is in consequence a caution to be given, and this also applies to the previous method described in which standing waves were also present. The points of maximum voltage in the standing-wave pattern exceed the voltage due to the incident wave, and so care is needed in the use of these methods if there is any danger of exceeding the breakdown properties of the line.

Returning to the use of stubs, in practice the power supplied to the load is monitored and the position and depth of the stub are varied by trial and error until maximum power is observed, a process which is usuaily quick and easy.

Tuning stubs may take different forms from that described. They often consist of two or three stubs, variable in depth but fixed in position; this makes for ease of manufacture, and the lack of the facility of longitudinal movement is overcome by being able to combine the effects of more than one stub. The stubs themselves may be lengths of line set transversely to the main line, and with a short-circuit movable along them. This is transformed down the stub, and presents a variable impedance at the junction with the main line.

Announcements

An Aerial Contractors Association is being formed, the main objects of which will be to promote and agree on a standard code of practice within the aerial erection industry, to consider, originate and promote a standard of business ethics and to form a mutual trade protection association for its members. Applications for membership should be sent to the Secretary. Aerial Contractors Association, 9 Fairlawnes, Manor Road, Wallington, Surrey.

A four-week training course for technical authors beginning 2nd March, is offered by Technivision Services. Further details may be obtained from The Communication Training Centre. Technivision Services, King's House, $125 / 127$ Promenade. Chelienham, GL50 INW.

The Electrical and Electronics Industries Benevolent Association has accepted the offer from GEC-English Electric to take over the Lady Nelson Home at Thorpe-le-Soken, Essex. The Home will be used as a permanent residence for needy and infirm people from the industries the E.E.I.B.A. serves.

Politechna (London) Lid, have announced the formation of A.K.G. Equipment Ltd, which has been formed in association with A.K.G., Vienna. The company will take over the marketing of A.K.G. products in this country and also in Eire, Republic of South Africa, Australia and New Zealand. This company will operate from Eardley House, 182/4 Campden Hill Road, London W. 8 (Tel: 01-229 3695), the headquarters of Politechna.

Plessey Components Group, of Swindon, have announced that they no longer manufacture audio amplifier modules. These modules can now be obtained from Britmac Electronics, Shelley Road Works, - Preston. Lancs.

Ferranti Ltd, of Edinburgh, and Northrop Corporation, of California, have completed an agreement for Northrop to manufacture under licence the Ferranti inertial navigation and attack system for the Harrier vertical take-off and landing (V/STOL) aircraft, when this is built in the United States.

Microwave International (U.K.) Lid, 33-37 Cowleaze Road, Kingston-upon-Thames, Surrey, have been appointed exclusive agents for the range of circuit frames and microwave
integrated circuit microstrips and ancillary components manufactured by Tek-Wave Inc, of Princetown, New Jersey.

The London Electrical Manufacturing Co. have appointed WEL. Components as sole distributors in England for their range of mica, ceramic, plastic film and electrolytic capacitors.

Plessey Components Group's Wiring and Connectors Division has appointed Intel Connectors Ltd, of Vereker House. Gresse Street, London W. 1 as distributors for the complete range of Plessey connectors.

Pye of Cambridge Lid has announced a merger with BEPI (Electronics) Ltd, of Galashiels and Kelso, Scotland, manufacturers of a wide range of multilayer printed circuit boards.

Following completion of an original $\mathbf{5} \mathbf{0 , 0 0 0}$ contract for 10 television detector systems, Vosper Electric, the industrial and marine controls division of the Vosper Thornycroft Group, has started work on a repeat order valued at about $£ 100,000$. This latest Government order calls for 18 detector systems plus two sets of spares. The detectors have been developed by Vosper from a prototype operated by the Post Office for the Ministry of Posts and Telecommunications.

The Marconi Company has received an order for major extensions to sound and television broadcasting facilities in Greece and the Aegean Islands. Two 100 kW h.f. broadcast transmitters are being supplied for use on the International External Broadcasting Service. The order includes sixteen Marconi Mark V and two Mark VI cameras for use at the new television centre planned for Athens.

The Ministry of Technology has placed a further order for Cossor CDU. 150 (CT.531) oscilloscopes, bringing the total Ministry orders of this instrument to more than 1,200 in the past year.

Redifon Ltd, has supplied manpack transmitter-receivers worth $£ 30,000$ to the Malaysian Ministry of Defence for the country's security forces.

Marconi Marine has supplied twointerswitched radars, a complete single-sideband communications system, v.h.f. radiotelephone, navigation aid equipment and television for the crew, for the latest refrigerated cargo vessel under construction for the Fyffes Group Lid.

GEC-AEI Telecommunications Lid, has received an order from the Post Office worth over $£ 375,000$ for data transmission equipment, bringing the total value of G.P.O. orders received by the company for this equipment to nearly $£ 1.75 \mathrm{M}$.

The new address of Silvers Lab. U.K. office is Old Haverhill Road, Little Wratting, Suffolk.

UK Solenoid Ltd, of Hungerford, Berkshire. have opened a Northern Ireland depot and office at 163 University Street. Belfast. BT7 1HR. (Tel: Relfast 34582).

Instrumentation Amplifier

A d.c. amplifier of very high performance using integrated circuits

by A. E. Crump*

This amplifier design is for use in simple instrumentation systems where a quantity to be monitored is represented by a proportional d.c. signal which has to be relayed over a cable to a meter at a remote point. It may also be used as a buffer or preamplifier to an analogue-to-digital converter in more sophisticated systems.
The majority of industrial grade transducers have an output circuit that approximates to a 'current source and that give outputs of around 10 mA and are therefore not significantly affected by the varying resistance of reasonable lengths of cable. Sometimes, however, it is necessary to use a long cable run that may exceed the maximum resistance specified by the transducer manufacturer. It is in these circumstances that one or more amplifiers are needed. It is important that the output circuit of such an amplifier should be a current source so that the output signal shall be insensitive to varying resistance in the driven portion of the cable.
Occasionally transducers with very low output signals have to be used, and in these cases it is prudent to amplify the signal, before transmission, to a level approaching 10 mA (full scale) in order that the effects of noise and other interference within the cable are reduced. Even where such signals are not transmitted over a cable it is usually necessary to provide amplification for driving analogue-to-digital converters, pen recorders etc., and here again a currentsource output stage is preferable.
The amplifier described has a symmetrical current source output stage, has excellent stability and can produce a 10 mA output current from input signals as low as 50 mV . The design does not involve heavy cost of components and its accuracy is adequate for most applications. Fig 1 is the block diagram of the amplifier. Each block will be discussed in turn.

Sink/source stage

The elements of this stage are shown in Fig. 2(c). At first sight this might seem to be an unnecessarily complicated method of producing an output current ($I_{\text {ous }}$) proportional to an input voltage ($V_{i n}$). It is interesting, therefore, to look at the simpler circuit shown in Fig. 2(a) first.
The problem with this simple common emitter stage is that the linearity of the stage deteriorates as $V_{\text {in }}$ approaches $V_{b e}$, and
when $V_{i n}=V_{b e}$ the transistor starts to turn off. The other point is, of course, that the output signal current can only flow in one direction, whereas, with the arrangement shown in Fig. 2(c) the output current is able to flow in either direction.

Fig. 2(b) illustrates the basic principle. The current generator I_{R} produces a fixed reference current whereas the current generated by the source I_{S} varies proportionately to the signal voltage $V_{i n}$. The difference current flows through the load, the direction of flow depending upon which current is the greater.

Now let us assume that I_{S} is generated by a circuit similar to that of Fig. 2(a). Provided that the transistor is never allowed to approach either saturation or cut off, then the difference current $I_{\text {out }}$ can fall to zero and then increase in the reverse direction while maintaining very good linearity.

The circuit is designed so that when the input to the complete amplifier is zero, then the voltage amplifier generates an offset

AMPLIFIER SPECIFICATION

Maximum tronsconductance	$=200 \mathrm{~mA} / \mathrm{V}$
Maximum recommended output swing	$= \pm 10 \mathrm{~mA}$
Output overload point	$= \pm 125 \mathrm{~mA}$
Input resistance ot maximum gain	$=10 k \Omega$
Common-mode rejection	$=60 d \mathrm{~B}$
Supply voltoges	$= \pm 12 \mathrm{~V}$
Te: רperoture ronge	$=0-60^{\circ} \mathrm{C}$
. Hoximum error over temperature ronge	$= \pm 1 \%$

Fig. I. (Left) Block diagram of the amplifier.

Fig. 2. (Below) (a) Single-ended current source and transfer characteristic,
(b) Simplified current source stage,
(c) Final current source stage.

potential large enough to drive 12.5 mA through the source transistor. The sink transistor is designed to sink exactly this amount of current, hence the output current to the load is zero. A "fine" offset adjustment is provided on the amplifier to compensate for component variations. When a signal is applied to the input terminals then the source transistor conducts either more or less depending upon the signal polarity, and produces a corresponding signal in the load.

Design

The reference, or sink, current is required to be constant and stable and to this end a high-grade reference diode is used to generate V_{R}. In order that the full stability of the reference diode can be used it is necessary to keep the diode bias current as steady as possible at the recommended current of 5 mA . If a different bias current is used, the very low temperature coefficient of $0.001 \% /{ }^{\circ} \mathrm{C}$ cannot be maintained.

The value of $R_{S} K$ has been chosen so that the sink transistor base current is considerably less than the diode bias current therefore fluctuations in base current should not significantly affect the bias current.

High-stability reference diodes tend to produce voltages in the range 5.6 to 10 V and the ZS7 used in this design was found to give a nominal 7 V .

As the supply voltages $V_{c c 1}$ and $V_{c c 2}$ are only 12 V each it is necessary to reduce the reference voltage to prevent premature overload of the output stage under full drive conditions.

The reduction is effected by means of a precision potential divider network formed by R_{8} and R_{10} (Fig. 5).

The value of R_{7} has been made equal to R_{4} to ensure optimum thermal tracking of the source and sink transistor $V_{b e}$ characteristics. In order to further assist thermal tracking the sink and source transistors are type BFX81 which is an integrated circuit complementary transistor pair on a single chip.

The effect of $V_{b e}$ changes upon the value of the output current can be seen from the following equations.

$$
\begin{aligned}
I_{R} & =\frac{V_{R}\left(\frac{R_{8}}{R_{8}+R_{10}}\right)-V_{b e} R}{R_{7}} \\
\therefore \delta I_{R} & =\frac{-\delta V_{b e} R}{R_{7}}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{S} & =\frac{V_{5}-V_{\text {bes }}}{R_{4}} \\
\therefore \delta I_{S} & =\frac{-\delta V_{\text {bes }}}{R_{4}}
\end{aligned}
$$

Now the design is such that

$$
V_{S}=V R\left[\left(R_{8}\right) /\left(R_{8}+R_{10}\right)\right]
$$

in the quiescent state (i.e. transducer signal $=$ zero), hence provided that $V_{b e} R$ is equal to $V_{\text {bes }}$, both statically and incrementally, then $I_{R}-I_{S}$ will also be zero, thus maintaining the output conditions despite thermal fluctuations.

Fig. 3. Self-compensating currem source.
Fig. 4. A voltage amplifier.

Fig. 5. Overall circuit diagram of the amplifier and suggested layout of components.
R_{5} is present to ensure that there is always a bleed current from the voltage regulator, thus ensuring that it never cuts off.

Voltage regulator

Referring to Fig. 5 it is apparent that if $V_{c c 1}$ varies, then I_{R} will not be effected at all as its magnitude depends only on the V_{R} circuit.

In the case of $V_{\text {in }}$ however the situation is not quite so straightforward because the magnitude of $V_{\text {in }}$ is normalized to zero volts by the voltage amplifier, whereas the resistor R_{4} is returned to $V_{c e 2}$. Should any change occur in $V_{\text {ce } 2}$ therefore, the difference voltage $\delta V_{c c 2}$ will appear as an error signal in I_{S} and would degrade the accuracy of the amplifier.

The error signal at the output due to a change in $V_{c c 2}$ would be:

$$
\delta I_{R}=\frac{\delta V_{c c 2}}{R_{4}}
$$

It is necessary therefore to design a voltage regulator using a reference diode normalized to the 0 V rail.

The arrangement is shown in Fig. 3. The requirements for the reference diode are similar to those used for the sink circuit as any variations in reference voltage appear as an error signal given by $\left(\delta V_{\text {ref }}\right) / R_{4}$. It is necessary to buffer the reference diode from the source transistor to stabilize the diode
bias current against changes in I_{5}, but in so doing a transistor is introduced whose own $V_{b e}$ changes would produce a further error signal. A complementary transistor is therefore used 10 compensate for this and to ensure good tracking the BFX81 has been used again.

The collector load resistors R_{1} and R_{6} have been chosen in such a way that the dissipated power in the two transistors is substantially equal-this being a further aid to thermal tracking.

The voltage amplifier

The voltage gain is derived from a conventional operational amplifier configuration, as illustrated in Fig. 4.

The voltage gain is given by

$$
\mu_{V}=\delta V_{\mathrm{s}} / \delta V=R_{\mathbf{9}} / R_{\mathrm{im}}
$$

Now in order to obtain an output swing $\left(S I_{s}\right)$ of 10 mA from the sink/source stage, the value of V_{s} will have to swing by an amount $\left(S I_{s}\right)\left(R_{4}\right)=10 \times 0.22$ that is 2.2 volts.

Now in order that this 2.2 V swing is obtainable with transducer signals as low as 50 mV , the gain of the voltage amplifier needs to be :

$$
\mu_{v}=2,200 / 50=44
$$

Thus if we select $10 \mathrm{k} \Omega$ as being the minimum permissible input resistance, the value of R_{9} must be $44(10)=440 \mathrm{k} \Omega$.

Fig. 6. An example of a modified input network.

It would not be wise to use higher absolute resistance values due to the difficulty of obtaining precision resistors in the megohm range

The gain can, of course, be varied by suitable choice of $R_{\text {in }}$ but because of noise problems it is not recommended that the value of $R_{i n}$ should be reduced below $10 \mathrm{k} \Omega$.
A small variable resistance $R V_{2}$ is included to provide the means of absorbing component tolerances and by its use the gain can be adjusted to the exact value of 44 .

Offset control

As previously mentioned, when the transducer signal is zero, a negative offset voltage must be present on the source transistor to achieve cancellation of the sink current

The supply from which this voltage is derived must be stable otherwise an error signal will appear at the output. It is convenient to use the voltage regulator output for this purpose and the arrangement is shown in the complete circuit diagram, Fig. 5. A disadvantage of this method is that in certain circumstances it could lead to instability due to positive feedback and it is then preferable to use an external reference source or a further ZS7 diode.

Layout and instability

The semiconductors used have cut off frequencies in the megahertz region, therefore care has to be taken with the physical layout of the printed circuit board to ensure that the interconnecting tracks are as short as possible.

The components R_{11}, C_{3} and C_{4} ensure a stable gain/phase characteristic for the operational amplifier, and C_{4} provides a similar stabilizing effect on the voltage regulator

Gain setting

In the circuit shown in Fig. $5 R_{i n}$ is $10 \mathrm{k} \Omega$ (i.e. 50 mV input swing produces 10 mA output swing). If it is required to use a lower gain setting it is preferable to keep $R_{i n}$ within the range $10-50 \mathrm{k} \Omega$ in order to maintain the specified accuracy. Where still lower gains are required it is preferable to use a series attenuator designed so that the net value of $R_{i n}$ is always within the above range. As an example the network shown in Fig. 6 has an attenuation factor of 20 thus 1 V input would produce 10 mA output from the amplifier.

Transient-catching diodes and suppression capacitors may be connected across the input and output terminals as required.

Advance in i.c. manufacturing technique

A new method for producing integrated circuits has been announced by the SGS International Group of companies.

The new process, called Planox, (which has been developed at the SGS laboratories at Agrate, Milan) is applicable to both bipolar and m.o.s. devices, but is of particular importance in the production of m.o.s. integrated circuits.

In an m.o.s. device, the oxide layer grown on the gate regions has to be extremely thin in order to achieve low threshold voltage sensitivity; and the oxide layer in the field region has to be thick to avoid spurious effects. When produced by conventional methods, the thick layer on the field region gives rise to high 'steps' of oxide on the chip surface over which the metal pattern has to be formed. The sharp bends in the metal layer can result in weak spots or 'microcracks'.

In the Planox process this possibility is eliminated by removing sufficient underlying silicon to accommodate the oxide thickness, so that the resultant surface is almost flat. This is achieved by depositing on the silicon wafer a thin film of silicon nitride, which prevents oxidation, and which can be selectively etched with respect to silicon dioxide. The nitride film is then masked and etched to lay bare the regions where thick oxide is to be grown. The growth of silicon dioxide on the bared regions uses sufficient underlying silicon to provide an oxide layer that has the required thickness and a surface which is co-planar with that of the nitride film.

When used in the production of m.o.s. devices, the silicon nitride is
then selectively etched, exposing the regions that are to be diffused to create the source and drain electrodes.

Source and drain are passivated by the thick oxide and the remaining nitride is selectively etched away from the gate. The subsequent steps of gate oxidation, opening of contacts and metallization are carried out using conventional techniques. The Planox process will be used in the production of SGS m.o.s. devices during the second quarter of 1970 .

Conventional device

Planox device

Fifteen different phosphors, from a very short persistence blue-purple ($0.12 \mu \mathrm{~s}$) to a very long persistence orange (25s), together with optional extras such as internal and external graticules, are offered by Brimar to users of cathode ray tubes.

Brimar offers the widest range of phosphors in the industry, leads in the use of new materials, and has pioneered special phosphors for medical applications, in which field they enjoy complete superiority.

And in addition to this, Brimar have an unparalleled capability in chemistry, electron optics, and vacuum physics, enabling them to offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the
electronics industry, covers advice on tube characteristics, operating conditions, and associated components.

Tailored packaging and reliable deliveries to meet production schedules are also part of the Brimar services.

Want to know more about BRIMAR Industrial Cathode Ray Tubes ?-Ask to see our latest catalogue.

7 Soho Square, London, W1V 6DN. Telephone: 01-4375233

Know the latest from C.I.

No. 2

Count up, count down counter SERIES 943

Now in quantity production, this new C.I. counter has been produced with the needs of the Gaming and Amusement Machine manufacturers in mind. Nevertheless, it will have many other outlets where a robust unit of uncomplicated design is needed.
The three drum wheel bank can be indexed by solenoid actuators in either direction. The wheel bank registers from 000 to 999 where a stop prevents an additional pulse zeroing the wheels. Similarly the counter cannot subtract from 000 to 999 . When readout is 001 , a subtract pulse will find 000 and a change-over micro-switch will operate. Approximately $6 \frac{1}{2}{ }^{\prime \prime}$ high, $4 \frac{1}{2}$ " wide, $3 \frac{1}{2}{ }^{\prime \prime}$ deep. 230 volts. AC 50 cycle supply. Other operating voltages available.

ELAPSED TIME METER SERIES 36

Records time in hours and tenths of hours an electric circuit or machine has been in use: provides data on servicing and plant maintenance.

COUNTING INSTRUMENTS LIMITED

Elstree Way, Boreham Wood, Herts. Tel : 01-953 4151
A MEMBER OF THE G.H.P. GROUP LIMITED

Please send details of Series 943 Counter Series 36 Elapsed Time Meter

Name \qquad Position

Company \qquad

Address

STANDARD CELL BATTERIES *

 TYPE 5644 \& 5644AThese batteries contain 12 specially selected Standard Cells, maintained at a constant temperature held to within $0.01^{\circ} \mathrm{C}$. This provides the most accurate standardising potential for high precision measurements and control.
STANDARD CELLS*
A selection of the highest performance
Standard Cells for laboratory use is available, supplied in various cases or unmounted if
required.

* SEND FOR LEAFLETS 1 \& 1A
H. TINSLEY \& CO LTO WERNDEE HALL

SOUTH NORWOOD LONDON SE25 • 01-654 6046

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Digitally-set audio oscillator

An i.c. is used t, provide a digitally setable square-wave oscillator, operating over the range $10-4990 \mathrm{~Hz}$. The circuit (Fig.1) is one of the saturating multivi-
frequency will be correctly selected. The oscillator provides an output of about 20V pk-pk. Switching time effects cause the frequency law to deviate from the theoretical at high frequencies, the actual frequency being somewhat lower. In con-

Fig. 1. Square wave oscillator circuit

Fig. 2. Decade capacitor array-replaces C in Fig. 1.
brator circuits described by G. B. Clayton in his 'Operational Amplifiers' series. For the astable multivibrator the frequency is given by $f=k / C$ where k is a constant and C the capacitance in circuit. To achieve decade selection of frequency increments of $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz are added by adding in the appropriate increments $0 \|^{\circ} / / C$. corresponding to the frequency desired. If the increments are added in the correct manner, the
sequence the values of the $\times 16 \mathrm{~Hz}$ canaci tors should successively decrease. The arrangement of capacitors is shown in Fig. 2.

David TAylor, G8ARV.
Jesus College,
Cambridge.

Audio switch

The circuit was developed to close a d.c. circuit when an audio signal was present. A relay proved to be not quite suitable. The circuit responds equally well to sine- or square-wave signals. T_{1} in the circuit is a Collins 667-0522-00 15 mW audio transformer with primary impedance of 10 k and two 600 secondaries providing
approximately 1.7 V r.m.s. to the bridge rectifiers. No doubt any small transformer could be used provided the secondary is split, and experiments with pot-cores gave the same results. $M r_{1}$ and $M r_{1}$ are bridge rectifiers consisting of OA81 or similar diodes-the base current requirements are quite small on both transistors. The filtering used gave reasonably inter-ference-free switching at approximately 2 kHz input. $T r_{1}$ and $T r_{2}$ are R.C.A. type 40412 with small heatsinks, since they switched 250 V at 15 mA . D_{1} to D_{4} used were silicon diodes rated p.i.v. 600, at 1 A . R_{5} and C_{5} reduced switching transients further. C_{5} must be at least 1.5 times the open circuit voltage of the loop.
J. DU P. DE BEER,

South African Broadcasting Corporation.

Resolver with gain control

Conversion from cartesian (x, y) to polar (r, θ) co-ordinates in an analogue computer can be done with a resolver as shown. The normal method is with switch S in position 1, but the gain of the resolver servo then varies with r. This can be compensated with a multiplier ($\times 1 / r$) in the loop but a better way is to add the components in box A and change S to position 2 ; the resolver output is then compared with the fixed voltage V and the potentiometer feed

adjusted by the amplifier to keep it constant. The servo loop operates at fixed gain and if the resolver is magnetic its magnetization remains constant, which gives best accuracy.
C. N. GORDON,

Defence Operational Analysis Establishment, Surrey.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents
out that it is standard Continental practice to work in mm for dimensions and then on any occasion where calculations are made involving other fundamental units. a factor of 10^{-3} would be introduced to convert to the basic S.I unit. Does Mr Kelly think that we can no longer use $\mu \mathrm{F}$ or nF or pF but instead write $10^{-6} \mathrm{~F}$, $10^{-9} \mathrm{~F}, 10^{-12} \mathrm{~F}$? Of course we can, and of course we can also still talk in grammes, milligrammes, $\mathrm{cm}, \mathrm{mm}, \mathrm{km}$, or what have you! The only difficult unit is compliance, normally expressed in cm / dyne. This is a nongravitational unit and there is a simple conversion factor to $\mathrm{m} /$ newton for calculation purposes which is $1 \mathrm{~cm} /$ dyne $=10^{3} \mathrm{~m} /$ newton. Thus introducing the S.I will see off "thous" ounces etc but not grammes, milligrammes or mm. $\mu \mathrm{m}$ (microns)
B. J C Burrows,

Abingdon,
Berks.

The author replies:

I seem to have stirred up a hornet's nest in my "obdurate insistence on the familiar"; however, I am unashamedly unrepentant.
In my review of the products of a virile and viable industry I employed terms and dimensions in general use in this industry. The Editor originally suggested that I should use S.I. units, but having discussed the question of dimensions with a number of manufacturers, persuaded him to permit me to use the classic c.g.s. and British dimensions.

Possibly in the next few years the industry during its conversion to metrication will adopt S.I. units as standard; when this occurs I shall be most happy to record events in the vernacular.
Stanley Kelly

Modified "Dinsdale" amplifier, for use with silicon planar transistors. Output 10W, 15Ω or $15 \mathrm{~W}, 8 \Omega$. Suitable for use with either positive or negative h.t. line depending on transistors or $15 W, 8 \Omega$. Suitable for use with either positive ornegative /h.t. line depending on transistors
and polarity of electrolytic capacitors. Amended component values are undertined. Capacitor C_{5}, diode D_{1} and resistors R_{5}, R_{9}, R_{10} and R_{12} in the original design were omitted.
negative h.t. rails with the transistor types shown in brackets, provided that the electrolytic capacitors are reversed. The numbering of the components is that used in Mr, Dinsdale's January 1965 article.

The loudspeaker "plop" on switching on is avoided by d.c. coupling the n.f.b. to the first transistor via R_{16}. This causes the potential at the loudspeaker output to rise fairly slowly, as C, charges. This arrangement reduces the hum pick-up on badly smoothed h.t. supplies.
J. L. Linsley Hood, Taunton, Somerset.

In defence of S.I. Units

On page 548 (the right hand column) of Mr. Kelly's interesting and informative article in the December issue he devotes a paragraph to the subject of S.I. Units. I am surprised at some of the remarks he makes which seem to imply that S.I. does not allow of the normal subdivision etc. of its basic units. It is perhaps worth pointing

Local radio

Derek Faraday's letter (page 565 December W.W.) advocating extensive use of m.w. transmitters in the U.K. can be dismissed in one sentence. These transmitters are and would be incapable of reproducing music-either classical, light or 'pop'.

Sound broadcasting in the U.K. is already about twenty years behind the rest of Europe. There is a vicious circle affecting the public, the B.B.C. and set makers which, after all this time, has prevented v.h.f./f.m. radio from getting off the ground.
In this small country (Belgium), for example, there are six separate national programmes on v.h.f., plus several regional programmes. Two of the best music programmes are on v.h.f. only-the public abandoned listening to music on a.m. years ago.

It is possible to listen to stereo programmes here all day, as it is in most north European countries. Apart from all kinds of music in stereo, there are frequent drama programmes in stereo.

You could not sell a purely a.m. receiver in continental Europe. In fact, more and more people are buying only a
v.h.f. tuner as their sense of reproduction quality makes them completely disinterested in a.m. Also, a car radio without f.m. is unmarketable here, especially as a.m. cuts out under bridges and in tunnels.

There is a lot of negative discussion in the U.K. on the difficulties of v.h.f. reception. In Waterloo, Belgium, I can receive the Wrotham transmissions perfectly, in mono, on a medium-price Grundig receiver. In frosty or foggy weather I get Wrotham in stereo without background noise. Without difficulty, I can listen any day to more than fifty v.h.f. transmitters (not fifty different programmes, of course) twelve of them in stereo. There is no difficulty with reception of stereo from France, Holland and Germany at distances of 100 miles. Mono programmes on v.h.f. from places as far away as Hamburg (N.W.D.R.) can be heard clearly any evening. It is true that the v.h.f. broadcast band, here, is uncluttered by any public service transmissions. (When is the Home Office going to get the Police and ambulances off the broadcast bands?)

My Blaupunkt car radio, with one metre of telescopic aerial, picks up the Wrotham v.h.f. programmes in Brussels! Teenagers in Belgium, Holland and Germany listen to Radio Luxembourg on v.h.f., not on long- or medium-waves.

1 could go on and on citing examples showing how sound radio in Britain has stayed the poor cousin of Europe. There is deadlock in Britain, and the only way I can think to break this is for the B.B.C. to do as the administrations have in France, Holland, Belgium and Germany; that is, to broadcast the most popular programmes on v.h.f. only, gradually shutting down the m.w. transmitters.
BASIL Jackson.
Waterloo,
Belgium.

The Engineer in State and Private Enterprise

You question in your leading article in the December issue what there is in common between chartered engineers of various institutions.

The answer is that they are all trained in a target-directed discipline that calls for the highest degree of intelligence and involvement. Engineering contains financial, human and sociological factors which are absent from pure science. There are no natural divisions, and the man-made ones are crossed more frequently as the science of engineering develops.

A new branch of engineering tends to breed specialists, but their specialization becomes absorbed in time into the background training of all engineers. What differentiates the chartered engineer from the technician is the ability to apply his training to the solution of any engineering problem rather than to become expert in one technique.

The chartered engineer is loyal, keen on his job, independent, logical, outspoken and obstinate. He can neither be led nor
driven. He has a high standard of ethical conduct and resents being taken for a ride. He is impatient with obstacles and sometimes lacks finesse in dealing with them. Today he is unhappy about the weak direction which has allowed others to threaten his security by strong-arm methods. But he will not give his conscience to the keeping of a union in which his voice as a professional man cannot be heard.

That is why twenty three thousand membership forms have already been issued by the United Kingdom Association of Professional Engineers in response to applications. U.K.A.P.E. is the engineering profession's own union and will be run democratically to serve its interests. It will protect its members against injustice from all quarters, the government, employers, institutions or other unions. It will improve the status and conditions of the chartered engineer by giving him a stronger voice in society and a stable career structure, while at the same time not forgotting the interests of the technician engineer and the engineering technicians.
U.K.A.P.E. believes that those engaged in engineering are people of a special quality with a common imerest. While insisting on the sanctity of individual freedom, it also believes that disruption could be disastrous both socially and technologically.
R. L. Clarke.

Vice-president, U.K.A.P.E.,
London, S.W.I.

Op. amp. a.c. millivoltmeter

In your issue of October 1969 the article "Operational Amplifiers-9" by G. B. Clayton gives a circuit for a precise a.c. millivoltmeter. We recently had occasion to construct a similar forced feedback meter circuit to give a full-scale reading with 50 mV r.m.s. input down to 3 Hz . The circuit below may be of some interest to readers. A Fairchild op. amp. was used. M. V. Dromgoole.

Dept. of Scientific \& Industrial Research, Christchurch,
New Zealand.

Linear integrated circuits

Mr. Hirst, in his article on linear integrated circuits in your January issue, reveals a need for three specific devices, in addition to the ubiquitous operational amplifier, which should be cheaply and easily available as standard linear 'building blocks'. These are an h.f. amplifier, an I.f. amplifier and a transistor ring modulator for mixer use. He suggests that the first two might be combined in a general purpose a.c. amplifier.

For over 18 months this company has manufactured such devices and they are all available at prices in the $£ 1-£ 2$ range.

The types are:
L.F. amplifiers. Low power; the SL630C has 40 dB gain from a few Hz to 100 kHz and has an internal gain control giving 60 dB control. High power; the SL402A and SL403A will give over 2 W and over 3 W output respectively over a slightly lower frequency range. They have very high input impedance.
H.F. amplifiers. The SL6 10C, SL6 1 IC and SL612C provide gains of 10,20 and 50 respectively over the frequency ranges of 80 kHz to 100 MHz , to 80 MHz , and to 12 MHz respectively. All can drive IV r.m.s. output at less than 1% intermodulation and all have over 40 dB a.g.c. range.

Mixers. We do not manufacture a ring modulator but the SL640C and the SL641C double balanced modulators will out-perform most ring modulators over the frequency range of 10 Hz to over 100 MHz without the need for transformers. They have low signal and carrier leak age.

In addition we make the SL610C and the SL621C which are a.g.c. circuits having fast attack, slow decay and the ability to track a signal fading faster than the decay rate. They may be used with the SL6 10-612 and the SL630.

To satisfy Mr. Hirst's other condition-that continued supply be assured-these devices form an integral part of several professional and military equipments and their availability for the next five or ten years is assured.
J. BRyANT,

Plessey Company,
Components Group, Swindon, Wilts.

Active Filters

7. The two-integrator loop

by F. E. J. Girling* and E. F. Good*

The two-integrator loop is an active $C R$ analogue of a passive $L C R$ circuit, in which outputs which may be identified with the voltages severally developed across the inductance (high-pass response), the resistance (tuned-circuit response), and the capacitance (low-pass response), are available simultaneously. These outputs are developed with low source impedance and, together with the input voltage, have one terminal in common. They are therefore easily added in the proportions required to give any desired 2nd-order transfer-function. Thus the analogue can be the basis of a universal building block for higher-order filters of any kind, using the method of synthesis by factors.
The two-integrator loop is particularly useful where higher Q-factors are needed than are practicable from a circuit which depends for Q factor on a single amplifier; and it is particularly convenient when variable tuning is required.

In Parts 5 and 6 were described a number of circuits based on the lag-and-integrator loop for obtaining second-order response, low-pass, tuned-circuit, high-pass, and notch. In a following article it will be shown how a number of such circuits can be put in tandem (together with, when required, simple lag and simple lead networks) to make higher-order filters. In general terms the sharper the corner at cutoff the higher the Q factor of at least one of the secondorder constituents (or factors). The weak relationship between maximum Q factor and amplifier gain $\left(q \neq \frac{1}{2} \sqrt{ } A\right)$ is then often a serious limitation with circuits of the lag-and-integrator type, and a more powerful method is needed. This is provided by the two-integrator loop, which can draw on the product of the gains of two amplifiers.
The two-integrator loop, in one form or another, is probably the most important system to be described in this series of articles. It is an analogue of any basic oscillatory system, e.g. a pendulum, a mass and spring, or a tuned circuit, since in the ideal case of zero damping it is defined by the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}=-\frac{1}{T_{1} T_{2}} \theta . \tag{1}
\end{equation*}
$$

θ may represent any variable such as linear position, angular position, voltage, etc., and the equation states that the restoring

[^10]acceleration is proportional to the displacement. Hence the natural motion is simple harmonic of period $2 \pi \sqrt{ }\left(T_{1} T_{2}\right)$, i.e.
\[

$$
\begin{equation*}
\omega_{c}=2 \pi f_{c}=\frac{1}{\sqrt{T_{1} T_{2}}} \tag{2}
\end{equation*}
$$

\]

Fig. 1 shows the system schematically. By working backwards from the output, it can be seen that the "error" between input and output ($\theta_{\text {in }}-\theta$) equates to $p^{2} T_{1} T_{2} \theta$, and that hence when there is no input stimulus ($\theta_{\text {in }}=0$) equn. (1) is obtained.

The two-integrator loop has been described previously in these general terms ${ }^{1}$. In the present article it is derived as a particular analogue of an LCR tuned circuit, so that the corresponding properties of the active and passive systems can be more readily identified.
Because of the multiplicity of amplifiers required, the use of the two-integrator loop as a means of realising active filters, especially ones of higher order, has until recently seemed both cumbersome and costly; but with the arrival of silicon integrated circuits the position began to alter, and now two operational amplifiers are available on a single chip and three have been promised. It is therefore becoming increasingly attractive to take advantage of the versatility, improved performance, and greater designability, offered by the system.

Analogue of an LCR network

A functional diagram of an active system which copies the working of a series $L C R$ passive network can be derived by the steps shown in Fig. 2.

Since, in Fig. 2(a), the same current flows through all three components, the ratio of the voltages across any two components will equal the ratio of their operational impedences. Therefore the ratio of V_{R} (the voltage across the resistance) to V_{L} (the voltage across the inductance) is given by

$$
\begin{equation*}
V_{R} / V_{L}=Z_{R} / Z_{L}, \tag{3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
V_{R}=\frac{1}{p L / R} V_{\mathrm{L}} \tag{4}
\end{equation*}
$$

which shows that V_{R} may be developed from V_{L} by integration carried out to the scale defined by the time constant L / R.

Similarly V_{C} (the voltage across the capacitor) may be developed from V_{R} by
integration to scale defined by the time constant $C R$, i.e. since

$$
\begin{align*}
V_{c} / V_{R} & =Z_{C} / Z_{R} \tag{5}\\
V_{C} & =\frac{1}{p C R} V_{R} \tag{6}
\end{align*}
$$

Thus, given the voltage \widetilde{V}_{L}, the voltages V_{R} and V_{C} may be developed, as in Fig. 2(b).

Fig. 1. Ideal two-integrator loop.
(a)

$$
T=\sqrt{L C}, \quad q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

(b)

(c)

(d)

Fig. 2. Two-integrator loop modelled on passive LCR circuit.
by the use of two integrators connected in series. In terms of the parameters T and q, the $T \mathrm{~s}$ of the two integrators are $L / R=q T$ and $C R=T / q$. To complete the analogue it only remains to establish the input V_{L}. This may be done by making the further connections, as shown in Fig. 2(c), in accordance with the self-evident relation

$$
\begin{equation*}
V_{L}=V_{i n}-V_{C}-V_{R} \tag{7}
\end{equation*}
$$

Properties of the analogue

The schematic of Fig. 2(c) shows only the essence of the mathematical processes that have to be instrumented, and incidental sign changes that may attend the use ofelectronic integrators and summing amplifiers have been ignored. Each integrator will use an amplifier; and, since in a practical circuit account must be taken of sign changes in order that the loops may be closed in their correct sense, it is clear that a total of three or four amplifiers may be needed. This will hardly be justified unless this apparently extravagant use of gain can be shown to confer important advantages, and in particular a higher Q factor will be looked for than can be obtained from the singleamplifier lag-and-integrator loop.

One advantage is immediately apparent. It has already been shown that many activefilter networks can yield two or more different responses by introducing the input voltage into different branches and/or by taking the output from different pairs of terminals. The system shown in Fig. 2(c) gives three responses simultaneously:
V_{c}, low-pass

$$
V_{R} \text {, tuned circuit }
$$

V_{L}, high-pass
Remembering the results given in Part 2, it should be noted that at the resonant frequency, $\omega_{C}=1 / \sqrt{L C}$, the responses at V_{c} and V_{L} both have magnitude q while that at V_{R} is depressed to unity for all values of q.
It is easy to show, however, that the particular arrangement of the analogue which is shown in Fig. 2(c) does not make effective use of the available gain from two integrators. The contents of the broken-line enclosure reduce to the simple lag $1 /(1+p L / R)$ shown in Fig. 2(d); that is 10 say, apart from the loss of the separate terminal for V_{L}, this part of the analogue could be replaced by a passive network. This reduction can be made by substituting $\mu=R / p L$ and $\beta=-1$ in Black's formula $G=\mu /(1-\mu \beta)$ or, alternatively, by copying the working of the $L C R$ network according to the relation

$$
\begin{equation*}
\frac{V_{R}}{V_{R}+V_{L}}=\frac{Z_{R}}{Z_{R}+Z_{L}}=\frac{1}{1+p L / R} \tag{8}
\end{equation*}
$$

and by closing the loop to implement equn (7) as

$$
\begin{equation*}
V_{R}+V_{L}=V_{\text {in }}-V_{C} . \tag{9}
\end{equation*}
$$

Thus, although it has two integrating amplifiers, the analogue has been constrained to behave as a loop with a lag and a single integrating amplifier, and it can have only a comparable performance. That this constraint can easily be removed will be shown. It is useful, however, to continue
the argument to emphasize the importance of taking account of the effect of finite gain upon the relative merits of different circuits.

Equivalent circuit for loop with finitegain integrators

As shown in Part 5, when allowance is made for finite amplifier gain, an integrator degenerates to a simple lag, of time constant $(A+1)$ times the ' T ' of the integrator, multiplied by the gain factor A. Thus

$$
\begin{equation*}
G(p)=\frac{A}{1+(A+1) p T}, \tag{10}
\end{equation*}
$$

which, when $A \gg 1$,

$$
\begin{equation*}
=\frac{A}{1+p A T}(\text { approx })=\frac{1}{\frac{1}{A}+p T} \tag{11}
\end{equation*}
$$

When this substitution is made in Fig. 2(c) for the ideal form $1 / p T$, Fig. 3(a) is obtained.

For sine-wave excitation j ω is written for p, and it follows that terms of the type $1 / A$ in the denominators represent components of input voltage in phase with output voltages. This corresponds in the passive prototype, Fig. 2(a), to a current in shunt with the capacitor which is in phase with the voltage across it, and to a voltage in series with the coil in phase with the current through it, and so leads to the equivalent circuit shown in

(a)

Fig. 3. Modifications to LCR circuit to correspond to finite gain in integrators.

Fig. 4. Modification of Fig. 3(a) to allow arbitrary scaling of voltage representing V_{R}.

Fig. 3(b). The Q factors of the lossy reactors (and those of the corresponding imperfect integrators) are
$Q_{C}=A_{1} \omega C R, \quad Q_{L}=A_{2} \omega L / R . \quad$ (12), (13)
When $A \rightarrow \infty$, the desired value of q is set in by making $C R=T / q$ and $L / R=q T$, where $T=1 / \omega_{C}=\sqrt{L C}$ and $q=\frac{1}{R} \sqrt{\frac{L}{C}}$
With A finite, the achieved value of q will be lower, but it is convenient to retain the notion of the ideal value of q and denote it by q_{i}, thus

$$
\begin{equation*}
q_{i}=\frac{1}{R} \sqrt{\frac{L}{C}} \tag{14}
\end{equation*}
$$

Any shift in resonant frequency can usually be neglected so it can be taken that $\omega_{C}=1 / \sqrt{L C}$, as before, and at ω_{c} the Q factors are

$$
Q_{\mathbf{c}}=A_{1} / q_{i}, \quad Q_{L}=q_{i} A(15),(16)
$$

The shorting out of R (with the arrowed link) in the equivalent circuit, Fig. 3(b), corresponds to opening the inner loop (at X) of the analogue, Fig. 3(a). The residual circuit quality is then deternined solely by the losses due to finite Q_{c} and Q_{L}; and, as explained in Part 5, these losses add as the reciprocals of the Qs. Denoting the residual circuit quality by q_{r}, it follows, from equns (15) and (16), that

$$
\begin{equation*}
\frac{1}{q_{r}}=\frac{q_{i}}{A_{1}}+\frac{1}{q_{i} A_{2}} \tag{17}
\end{equation*}
$$

and that the net circuit quality with R re-introduced (and the inner loop closed again) will be given by

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{1}{q_{r}} . \tag{18}
\end{equation*}
$$

Using similar amplifiers, so that it is sensible to put $A_{1}=A_{2}=A$, the residual loss is $\left(q_{i}+1 / q_{i}\right) / A$, which is a minimum $2 / A$, when $q_{i}=1$; i.e., when $R=\sqrt{L / C}$. But with q_{i} either $>$ or <1 the added loss increases, tending to q_{i} / A.
At $q_{i}=1$, the $T \mathrm{~s}$ of the two integrators are equal, and at resonance both integrators are working at a frequency equal to their unity-gain frequency. For $q_{i}>1$, the $C R$ integrator is working at a frequency below its unity-gain frequency and its phase defect (or loss factor), as explained in Part 5, is increased, and this is compensated to only a very small extent by the fact that the L / R integrator is working at a frequency above its unity-gain frequency with a reduced phase defect. For $q_{i}<1$, the same steps are followed in reverse order, but as the q decreases the extra loss is of little consequence.

Corresponding explanations in terms of the parameters of the equivalent current expose the quite unnatural situations which the analogue is constrained to reproduce For example, it is as if, in attempting to raise the q by reducing R, one were obliged at the same time to change the capacitor for another of equal value but of poorer Q factor, and so on.

The preferred analogue

The root cause of the trouble with the analogue of Fig. 2(c) is that the three
variables L, C and R in the passive network have been reduced to two, L / R and $C R$. This has come about because the voltage between the integrators, whose basic purpose is really only to provide a quantity proportional to the current I flowing through the network, has been arbitrarily, developed to a scale which makes $V_{R} \equiv I R$, whereas it may clearly be to any scale, provided only that the same loop gains are maintained.

Thus, as in Fig. 4, the two $T \mathrm{~s}$ can be made $L / x R$ and $x C R$, or L / R_{d} and $C R_{d}$ by putting $x=R_{d} / R$ and $T^{2}=L C$, as before. It follows then that the voltage between the integrators will be modified by the factor $x=R_{d} / R$, and the overall balance must be restored by scaling the inner loop by the inverse factor $1 / x$.

With finite gain the Q factors of the corresponding imperfect integrators and lossy reactors are
$Q_{C}=A_{1} \omega C R_{d}, \quad Q_{L}=A_{2} \omega L / R_{d}$ (20) (21) and the equivalent circuit is as Fig. 3(b) with R_{d} replacing R within the broken-line enclosures only. The residual loss due to Q_{C} and $Q_{L}\left(a t \omega_{C}\right)$ is now given by

$$
\begin{equation*}
\frac{1}{q_{r}}=\frac{1}{A_{1}}\left(\frac{q_{i}}{x}\right)+\frac{1}{A_{2}}\left(\frac{x}{q_{i}}\right) \tag{22}
\end{equation*}
$$

(q, corresponding to the circuit quality obtained if the inner loop is broken at X). The net circuit quality, with the inner loop closed is given by equn (18) with the value

Fig. 5. Loop with two finite-gain integrators and no other damping.

Fig. 6. Preferred form of basic schematic, with a particular electrical realization giving outputs proportional to V_{L} and V_{R}, but not V_{C}.
for q_{r} determined by equn (22). The residual loss can now be minimized for any given situation by choice of x.

Integrators with equal $A s$

In the normal way it can be expected that similar amplifiers will be used in each position, so that $A_{1}=A_{2}=A$. Then the residual loss, equn (22) is a minimum when

$$
\begin{equation*}
\frac{q_{i}}{x}=\frac{x}{q_{i}}=1 \tag{23}
\end{equation*}
$$

and hence

$$
\begin{align*}
\frac{1}{q_{r}} & =\frac{2}{A} \tag{24}\\
R_{d} & =\sqrt{\frac{L}{C}} \tag{25}
\end{align*}
$$

i.e., $R_{d}=\omega_{c} L=1 / \omega_{c} C$, the reactance of L and C at ω_{C}. This condition also makes the two T s equal,

$$
\begin{equation*}
q_{i} C R=L / q_{i} R=\sqrt{L C}=T \tag{26}
\end{equation*}
$$

The analogue arranged in this way is shown in Fig. 6(a), in which for simplicity the scaling factors are given for $A=\omega_{\infty}$. The voltage between the integrators, the tuned circuit response, is now

$$
\begin{equation*}
q V_{R}=I R_{d}=I \sqrt{\frac{L}{C}} \tag{27}
\end{equation*}
$$

With finite gain the net circuit quality is given by

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{1}{q_{r}}=\frac{1}{q_{i}}+\frac{2}{A} \tag{28}
\end{equation*}
$$

from equns (18) and (24); and it is easily shown that with equal $T s$ and equal A s this value of q_{r} is the maximum q obtainable from a two-integrator loop with a given overall gain (i.e., with $A_{1} A_{2}=A^{2}$). Thus, with the inner loop broken at X

$$
\begin{equation*}
q_{r}=q_{\max }=A / 2 \tag{29}
\end{equation*}
$$

Integrators with unequal $A s$
If the T s are equal but $A_{1} \neq A_{2}$,

$$
\begin{equation*}
\frac{1}{q_{r}}=\frac{1}{A_{1}}+\frac{1}{A_{2}} \tag{30}
\end{equation*}
$$

and q_{1} is less than $q_{\text {max }}$. To obtain the maximum value of q_{r} the two $T \mathrm{~s}$, say T_{1} and T_{2}, must be chosen so that $A_{1} T_{1}=A_{2} T_{2}$.
Discussion of best practical propor-
tioning of loop
In the practical circuits shown in Figs. 6(b) 7(b) the loop is closed with the help of a third amplifier. Normally this will be given a gain -1 . It could, however, by increasing the value of the feedback resistor be given a gain >1, so increasing the zero-frequency gain and $q_{\text {max }}$. But since at ω_{c} the magnitude of the loop gain is 1 approx., the " T " of one or both integrators would have to be increased to give a balancing loss of loop gain at ω_{c}. For frequencies near ω_{c} the inverting amplifier would be liable to overload before maximum output was reached at the other two terminals and, also, with the local feedback fraction reduced, the net effect of internal phase shifts is increased. In general both these features are undesirable. For a similar reason to the former it would not
usually be a good idea to use integrating amplifiers of different gains and assign to them unequal $T \mathrm{~s}$.

There is however a special case where equal $T \mathrm{~s}$ might be used with amplifiers of different A; this is when the emphasis on the requirement is to achieve adjacent outputs, say at V_{C} and $q V_{R}$, which are as accurately in quadrature as possible. If only a low Q factor is needed it might be thought sensible to make only A_{1} very high.

The general conclusion, then, is that for most practical purposes the arrangement of the analogue as shown in Fig. 6(a) is the most useful and may be regarded as the master schematic.

Comparison with two lags and gain

Fig. 5 is a reminder that a loop containing two finite-gain integrators with no additional damping is equivalent to a loop containing two (buffered) lags, of time constants $A_{1} T_{1}$ and $A_{2} T_{2}$, and with zerofrequency loop gain $\boldsymbol{A}_{1} \boldsymbol{A}_{2}$. Accordingly (see Part 4) maximum q is obtained when $q_{0}=\frac{1}{2}$; i.e., when the two lags have equal time constants, $A_{1} T_{1}=A_{2} T_{2}$, and so $q_{\text {max }}=\frac{1}{2}\left(A_{1} A_{2}\right)^{\frac{1}{2}}$. This confirms the results already obtained; for example when $A_{1}=A_{2}=A$ and $T_{1}=T_{2}, q_{\max }=A / 2$.

This is the same as the result $q_{\text {max }}=\frac{1}{2} A^{\frac{y}{4}}$ for a single-amplifier system in which the zero-frequency loop gain is A, since in the two integrator loop above the zerofrequency loop gain is A^{2}.

From the point of view of designing the feedback amplifiers themselves (satisfying the local Nyquist criteria) it is very much easier to handle two fed-back amplifiers, each of gain A, than a single amplifier of gain A^{2}; wider bandwidth can be provided and the useful range of operating frequencies extended. There is also the advantage that the two $T s$ ($C R$ products) do not have to be spread out in the ratio q^{2}. For these reasons, and others, the two integrator loop is the more powerful method for obtaining high Q factors:

Circuits using ideal operational amplifiers

There are many ways in which the basic functional schematic of Fig. 6(a) can be turned into a practical circuit, and techniques based on the operational amplifier concept seem a natural choice, though other techniques, e.g. the use of constant-current earthed-capacitor integrators, are possible. Often the complete generality offered by Fig. 6(a) is not required, and then some of the separate parts of the analogue can be amalgamated.

The contents of the broken-line enclosure, i.e. the integrator together with the inner loop which gives the damping for the system, are described by the transfer function

$$
\begin{align*}
G(p) & =\frac{1}{\frac{1}{q}+p T} \tag{31}\\
& =\frac{q}{1+p q T} \tag{32}
\end{align*}
$$

i.e., a lag of time constant $q T$, multiplied by the gain factor q. This leads to Fig. 6(b), in
which the damping is given by the resistance $q R$ connected across the C of the first integrator. This circuit will be most useful when low-pass response, V_{C}, and/or tunedcircuit response, $q V_{R}$, are required, as there is no output proportional to V_{L}, high-pass response.

It will be obvious that the $C \mathrm{~s}$ and $R \mathrm{~s}$ in the active circuits need not have absolute values equal to those in any passive prototype. Groups of components with the same marking should ideally be of equal value; but as the circuit does not magnify any errors, the allowable tolerance is no tighter than the accuracy to which the filter parameters are required to be known. Thus if one of the two resistors R^{\prime} is in error by a small percentage, the loop gain is changed by the same percentage, which is equivalent to a change of that percentage in the ' T ' of one of the integrators. Consequently there is a change in ω_{c} of half the percentage (equn. (2)), and the same in q (because the system may be analysed as a lag-and-integrator loop, and equn. (15) of Part 5 applies). The value of $R^{\prime \prime}$ does not affect the parameters of the resonant loop, provided there is enough loop gain round the first amplifier for the virtual-earth principle to apply; it only causes the amplitudes at all outputs to be multiplied by the factor $R^{\prime} / R^{\prime \prime}$.

The only difference between the schematics of Fig. 7(a) and Fig. 6(a) is that the equating of voltages, equn. (7), is carried out as

$$
\begin{equation*}
V_{L}=V_{i n}-\left(V_{C}+V_{R}\right) \tag{33}
\end{equation*}
$$

The contents of the enclosure are now described by the transfer function

$$
\begin{equation*}
G(p)=\frac{1}{q}+\frac{1}{p T} \tag{34}
\end{equation*}
$$

This leads to Fig. 7(b), in which the damping is introduced by connecting a resistance R / q in series with the capacitor of the second integrator. In this circuit V_{C} is lost as a separate output voltage, but $q V_{R}$ (tunedcircuit response) and V_{L} (high-pass response) remain.

Fig. $8(a)$ is a realization of the twointegrator circuit in its most general form. Damping is introduced without disturbing the input/output relationships of the integrators, and so all three responses are available as for Fig. 6(a). As drawn, Q factor is determined by the setting of the potential divider, which produces at its slider the voltage $q V_{R} / q=V_{R}$. Alternatively the two resistors marked $R^{\prime \prime}$ connected to the extra inverting amplifier may be given unequal values, the feedback one of the pair being made q times less than the other.

Thus adjustment of Q factor is independent of tuning, and the converse is also true: tuning can be varied independently of Q factor if the ' T 's of both integrators are varied in unison, which in practice means variation of both Rs or both Cs. In Figs. 6(b) and 7(b), because of the presence of a third resistance which must in a constant ratio with the two resistances R, variable tuning is not quite as easy. Tuning independent of Q factor is possible by ganged variation of the two C s, but tuning by variable resistance would need an awk ward three-gang arrangement.

Fig. 7. Alternative form of preferred schematic, with an electrical realization giving ourputs proportional to V_{C} and V_{R}, but not V_{L}.

Compound responses

For Fig. 8(a) the transfer functions to the three output terminals (when $R^{\prime \prime \prime}=R^{\prime}$, and $C R=T$) are, assuming ideal amplifiers $(A \rightarrow \infty)$, given by

$$
\begin{align*}
-V_{C} & =-\frac{1}{1+\frac{1}{q} p T+p^{2} T^{2}} \cdot V_{i n} \tag{35}\\
q V_{R} & =p T V_{C} \tag{36}\\
-V_{L} & =-p^{2} T^{2} V_{C} \tag{37}
\end{align*}
$$

and the corresponding frequency responses (amplitude) are related in the manner sketched in Fig. 9.
Each output voltage, and also $-V_{R}$ in the inner loop, and $V_{\text {in }}$. appears with one side grounded. It is, therefore, easy by adding, or subtracting, in the required proportions to obtain any second-order transfer function, viz

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{a_{1}+a_{2} p T+a_{3} p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{38}
\end{equation*}
$$

and the coefficients a_{1}, a_{2}, a_{3}, as well as q and T, may be adjusted independently. The system can therefore be used as a universal building brick for higher-order filters of any kind, using the method of synthesis by factors, which was referred to in Part 1.

Notch response, as shown in Part 2, is obtained when $a_{2}=0$ and a_{1} and a_{3} have the same sign, Fig. 8(b). And if $a_{1}=a_{3}$, the notch is symmetrical,

$$
V_{N}=V_{C}+V_{L}=\left(1+p^{2} T^{2}\right) V_{C}
$$

corresponding to the network of Fig. 8(c).

Fig. 8. A general electrical equivalent of the basic preferred schematic.

Fig. 9. Showing the relationship between the three outputs $V_{L}, q V_{R}$, and V_{C}; i.e., low-pass, tuned-circuit, and high-pass.

It is important to remember that at the frequency of zero transmission at the terminal V_{N}, which is also ω_{C}, there are large, and perhaps unseen, voltages of magnitude $q V_{i n}$ at terminals V_{C} and V_{L}. Care must be taken, therefore, to avoid overloading. This is a potential difficulty not present in the circuits described in Part 6, where subtraction occurs on the input side.
If $a_{1}=1$ and $a_{3}<1$, an unsymmetrical
notch of low-pass type is obtained, Fig. 8(d),

$$
\begin{equation*}
V_{N}=V_{C}+a_{3} V_{L}=\left(1+a_{3} p^{2} T^{2}\right) V_{C} \tag{39}
\end{equation*}
$$

Similarity if $a_{3}=1$ and $a_{1}<1$, an unsymmetrical notch of high-pass type is obtained, Fig. 8(e). The notch summing amplifier is not always required in a filter having several factors, because the summation for one stage can be made at the input of the following stage.

All-pass response, second-order,

$$
\begin{align*}
& \frac{1-\frac{1}{q} p T+p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}} V_{i n} \\
= & V_{L}-V_{R}+V_{C} \tag{40}
\end{align*}
$$

is easily obtained by adding all three primary outputs, as the output proportional to V_{R} already has the necessary relative sign reversal. Note: the relative magnitude of the contribution from the tuned-circuit output is V_{R}; i.e., $q V_{R} / q$.

The effect of parasite phase lags

The effect of parasitic phase lags, provided they are small, can be estimated as shown in Part 5. In the absence of such lags $1 / q=\tan \theta$, where θ is the phase margin at ω_{C}, and therefore for $q \gg 1,1 / q$ is approximately equal to the phase margin (measured in radians). Parasitic phase lags, by reducing the margin, increase the effective q, and are in effect negative loss factors. When the time constant of such a lag, t, is small compared with $T\left(T=1 / \omega_{c}\right)$, its phase lag in radians at ω_{c} is i / T, and equn. (18) may be further modified to

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{1}{q_{r}}-\sum \frac{t}{T} \tag{41}
\end{equation*}
$$

Lags inside the amplifiers may to a first approximation be taken as divided by the loop gain, which for the integrators is the amplifier gain.

Because the product of the gains of two amplifiers can be drawn on, the twointegrator loop is particularly suitable for realising high Q factors (tens rather than units). This means that $1 / q$ may well be small, and then for accurate design unwanted phase lag must be very small compared with the design value of T. In consequence very high values of Q factor are more practicable at low frequency.

When q is low, quite simple amplifiers with perhaps only one stage of gain may be used. This could be the case in, for example, a variably tuned audio-frequency filter. And because the bandwidth of such an amplifier could easily be large compared with the corner frequency of the filter, parasitic lags should be negligible. It will be useful, therefore, to consider in more detail the situation where finite (and rather low) zero-frequency gain is the major imperfection. This will be taken up again in the next article.

REFERENCE

${ }^{1}$ E. F. Good: "A two-phase low-frequency oscillator", Electronic Engineering, April and May 1957^{\prime} (Vol. 29, pp. 164-169, and 210-213).

Continued from p. 60

Appendix to Ceramic Pickups \& Transistor Pre-amps

(I) Gain and input impedance of virtual earth amplifiers

For high gain amplifier

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{2}}{Z_{1}} \quad \text { Junction of } Z_{1} \text { and } Z_{2} \\
& Z_{\text {in }} \approx Z_{1} \\
& Z_{\text {out }} \rightarrow 0
\end{aligned}
$$

Amplifier is phase inverting, e.g. one high gain transistor in common emitter mode.

A clear understanding of the operation of the equalization circuit put forward in this article is gained by thinking of the ceramic pickup capacitance as being a part of Z_{1} :
if $R_{1} \times C_{1}=R_{2} \times C_{2}$
then $Z_{2} / Z_{1}=$ constant, independent of f.
Therefore $V_{\text {out }} / E=$ constant over whole frequency range, which is the requirement for a mechanically compensated pickup. The virtual earth amplifier was used in the Dinsdale Mk. I pre-amplifier and more recently in the Linsley Hood pre-amplifier.

(2) High input impedance feedback amplifier

For large value of total gain

In general, $\frac{V_{\text {out }}}{E}=\frac{C_{1}}{C_{2}}$ at I.f. and
$\frac{V_{\text {out }}}{E}=\frac{R_{2}}{R_{1}}$ at h.f.

If the amplifier $-A$ consists of a transistor $\left(T r_{2}\right)$ in common emitter configuration and the current gain of Tr_{1} and $\operatorname{Tr}_{2}=\beta, Z_{\text {in }}$ tends to $\beta^{2} \times R_{2}$ shunted by $R_{b^{\prime} c}$ and the Miller capacitance of Tr_{1}.

Total gain $=$ gain of $\operatorname{Tr}_{1} \times|A|$
This system is used in the Dinsdale Mk. II pre-amplifier where $Z_{\text {in }} \approx 500 \mathrm{k} \Omega$ but it is of course frequency dependent; so normally $Z_{\text {in }}$ is shunted by a resistor to stabilize the input resistance to $100 \mathrm{k} \Omega$.
The Bailey pre-amplifier is a development of the Dinsdale Mk. II and an improvement has been made by adding an emitter follower after the second common emitter amplifier transistor to reduce the shunting effect of the feedback network (a frequency sensitive circuit in place of R_{1}) at high frequencies.

Corrections \& Amendments

Pickup Characteristics (December): Garrard point out that the output voltage of their cartridges should have been quoted in volts (not mV) and at 1 kHz at $3.54 \mathrm{~cm} / \mathrm{sec}$.

Thermistor Hygrometer (December): The U.K. distributors of the Philco Ford op. amp. PA 7709-39 are Electronic Component Services (Worcester) Ltd, 63/6 Foregate Street, Worcester, and not as stated on p. 558.

Electronic Metronome (January): Resistor R_{6} should be connected directly to the collector of $T r_{2}$. The junction of $V R_{1}$ and R_{5} should not be connected to the transistor.

Low-distortion Bias and Erase Oscillator (January): In Fig. 4 the 470 !? resistor in series with S_{3}. should be connected to the collector of 2N3704 and not the emitter as shown.

Residual magnetism may endanger your tapes every time you play them: For only 75/the Ferrograph Defluxer protects them.

No professional studio would ever record without defluxing the heads and tape guides; so it is sensible that you, too, should follow this procedure at home. Once you have made a recording, or bought a pre-recorded tape, you must ensure that your sound is protected.

To: The Ferrograph Co Ltd Mercury House
195 Knightsbridge London SW7 Telephone: 01-589 4485
Please send me a Ferrograph
Defluxer, complete with easy instructions for use.

Electrical pulses, or magnetic materials such as are in loudspeakers nearby, can cause magnetization of the heads and guides which increases background noise and reduces highfrequency response.

Prevent any possibility of ruining your tapes. This unique

Ferrograph Defluxer is simple and quick, and can be used with practically any make of tape recorder. Once you start using it, your valuable, often irreplaceable tapes are protected against magnetization: surely it is worth just $75 /$ - protection money! Call at your Ferrograph dealer, or send this coupon with your cheque/P.O. for a Defluxer. Money back guarantee if not satisfied.

Ferrograph
A member of the Wilmol Breeden Group
Name

Address
\qquad

I enclose cheque/P.O. for $£ 3-15 \mathrm{~s}$, crossed and made payable to the Ferrograph Co Ltd.

Something ICL,Plessey, NCR,Decca, Smiths Industries, Elliotts,Racal,Honeywellknow, and their customers ought toknow.

The world of Motorola has moved mightily to the UK. Production has begun at a brand new plant in East Kilbride, Scotland - expanding still further our world-wide manufacture. It's a big investment, and one more example of an international organisation at work.

But we're not all size, despite the thirty-five thousand different Motorola devices that are available today. It's technique - application and production engineering - that makes such a range possible and will make it possible for us to introduce 700 new products in 1970.

For example, Motorola is the only company already using spider bonding and beam lead welding in volume production of ICs. The bonds are at least five times stronger than those in conventional ICs (something else we think you ought to know).

Amplitude Modulation using an F.E.T.

Linear control over a wide range of carrier and modulation frequencies obtained using a junction field-effect transistor as a variable resistance

by M. E. Cook*

If a field-effect transistor is operated with $V_{D S}=0$ and $v_{d s}$ is restricted to a few hundred millivolts (peak-to-peak), the device exhibits a resistance $r_{d s}$, the value of which is dependent upon the gate-source bias voltage $-V_{G s}$. The relationship between $r_{d s}$ and $V_{G S}$ is roughly parabolic.
If the gate-source bias voltage $V_{G S}$ is to be used for modulation, a method has to be found for linearizing this parabolic curve which although ideal for automatic gain control application, is unsuitable for amplitude modulation. By shunting the f.e.t. with a suitable fixed resistor R, the combined resistance will tend to $r_{d s o}$ at $V_{G S}=0$, and to R when $-V_{G s}$ is large.

Amplitude modulation

This combined parallel resistance of R and $r_{d s}$ was used as the un-decoupled emitter resistance of a common emitter amplifier (Fig. 1). A blocking capacitor C_{1} was required to prevent the quiescent emitter voltage from appearing across the f.e.t.
Now, if driven from a low impedance source, the voltage gain of the complete amplifier is given by

$$
A=\frac{A}{1+B A},
$$

where A is the gain of the amplifier with the emitter decoupled, and β is the feedback factor.

$$
\beta=\frac{R_{E}}{R_{L}} \text { and } R_{E}=\frac{R r_{d s}}{R+r_{d s}}
$$

Thus the voltage gain of the amplifier can be varied from a maximum value when $R_{E} \approx r_{\text {dso }}$, to a minimum value at large values of $-V_{G S}$, when $R_{E} \approx R$. In fact, the bias can be taken a few hundred millivolts positive before the gate-source junction becomes forward-biased as is shown by Fig. 2(A). Hence by choice of suitable values for R and R_{L}, the gain of the bipolar transistor can be made proportional to the f.e.t. bias over a considerable range. As for any large signal amplifier, care has to be taken in selecting the operating quiescent point to give optimum linearity.
An amplitude modulator is thus achieved which will give a 1.5 V peak-to-peak output with a modulation depth of at least 33%, whilst restricting the signal voltage across
the field-effect transistor to less than 50 mV (peak-to-peak). The circuit will operate with carrier frequencies up to at least 10 MHz , whilst it can be modulated from d.c. to 25 kHz . The upper limit of modulation frequency is set by the parasitic capacitance between drain and gate of the f.e.t. A typical value of this capacitance is 3 pF . Capacitor C_{1}, from emitter to drain, should have a low reactance at the carrier frequency compared to $r_{\text {dso }}$. However if C_{1} is too large it will allow coupling of the modulation signal, via $C_{D G}$ to the emitter of the bipolar transistor, which acts as a common base amplifier to the modulation signal and will cause phase distortion at the output. This modulation coupling restricts f_{d} / f_{m} to greater than 10 . Oscillographs of typical outputs are shown in Figs. 2(B) and (C).

Balanced modulation

This was achieved by analogue summation of the unmodulated carrier and the phaseinverted amplitude-modulated ourpul from
the circuit already described. (A linear microcircuit amplifier would obviously perform suitably, but the author was restricted to the use of one supply rail.) The circuit in Fig. 3 was designed to operate over carrier frequencies from 100 to 150 kHz with modulating frequencies from d.c. to 10 kHz .

It was found necessary to equalize the response of the emitter-follower input stage with that of the modulator. This was achieved by the $3.3 \mathrm{k} \Omega$ series resistor and the

Fig. I. Basic amplitute modnletom

Fig. 2. Oscillographs of waceforms ohrained from circuit of Fig. I. (A) X.Y plot of A against VGs. (B) X-Y plot of modulated output $\left(f_{c}=100 \mathrm{kHz}, f_{m}=1 \mathrm{kHz}\right)$. (C) Modulated output on time scale.

[^11]Fig. 3. Balanced modulator

Fig. 4. Oscillographs of waveforms obtained from circuit of Fig. 3. (A) X-Y plot of output against modulation. (B) Modulated output on time axis.

Fig. S. Block schematic of a single-sideband generator.

Fig. 6. Dome 90° phase shift circuit for $f_{c} 100-150 \mathrm{kHz}$. Filter components should be $\pm 1 \%$ tolerance.
trimmer capacitor. If higher carrier frequencies are required, a common base or long tailed pair amplifier might be considered in order to give equal phase responses.

Transistors Tr_{4} and $T r_{5}$ form a simple summing amplifier, Tr_{4} being an inexpensive n -channel field-effect transistor which gives a high input impedance. Tr $_{5}$ provides a low output impedance.

Oscillographs of typical outputs are shown in Figs. 4(A) and (B).

Single-sideband generator

A single-sideband generator wasconstructed using two balanced modulator circuits already described, feeding into a common summing amplifier (Fig. 5). Dome phase shift networks were used to provide the necessary quadrature signals (Fig. 6). These phase shift networks provide two outputs whose phase varies logarithmically with respect to the input, but the phase difference
bet ween the two outputs remains at 90°, the amplitude of the outputs also remaining constant.

In the particular application for which the s.s.b. generator was designed, the modulation inputs are in the form of d.c. levels from phase comparators. However, on test, the circuit performed satisfactorily using modulation frequencies down to 0.1 Hz , and also covering the audio range $(130 \mathrm{~Hz}$ to 3.6 kHz).

Acknowledgement

1 am indebted to Professor J. Bell, of the Physics and Electrical Engineering Department at the Royal Naval College, Greenwich, for the support and encouragement that he has given.

A New Book

Colour Television, Vol. 2 by P. S. Carnt, B.Sc. (Eng.) and G. B. Townsend, Ph.D., B.Sc. Pp.276. Published by Butterworth \& Co., (Publishers) Ltd., 88 Kingsway, London, W.C.2. Price 75s.

This is the companion to Vol. 1 , which was first published in 1961 and dealt exclusively with the N.T.S.C. system of colour television, although a good deal of space was devoted to a 405 -line version of it. The present volume deals mainly with the PAL and SECAM systems, but there is a chapter covering ART, NIR and other systems.

On p. 3 the authors state that "A thorough
understanding of N.T.S.C. is essential for a study of PAL and is very helpful for understanding SECAM." Chapter 1 thus deals with N.T.S.C., but is revisionary, for the authors assume that the reader already has a detailed understanding of the system.

Potential readers who do not already possess this background knowledge may well be disinclined to approach PAL by way of N.T.S.C. preferring a book which dealt only with PAL and left out all reference to N.T.S.C. From the authors' point of view, however, the natural thing was to do what they have done and there is, indeed, much to be said for the historical approach. Certainly, a much more balanced understanding of colour television is obtained.

The treatment is generally good but there is one trap for the unwary which may lead them into confusion. This lies in the use of the terms "chroma" and "chrominance". Chroma is not an abbreviation of chrominance as anyone might be excused for thinking. The careful reader will find (p.31) that "chrominance" means the video colour-difference signals, whereas "chroma" means the modulated sub-carrier and its sidebands. In Vol. 1, the word "chroma" does not appear in the index (we have not checked that, in fact, it is nowhere used!). However, on P. 103 of that volume chrominance means in effect the colourdifference signals but is also used elsewhere (e.g., p. 211) for the modulated sub-carrier and its sidebands.

If one refers to Supplement No. 3 (1966) to B.S. 204 (1960), chrominance is defined as "A signal which is added to the luminous signal to convey colour information". Unfortunately, this is ambiguous by itself, but the definition of a chrominance sub-carrier is "The carrier which is modulated to form the chrominance signal". This makes it clear that by chrominance B.S. mean the modulated sub-carrier and its sidebands. The term "chroma" does not appear in the standard at all.
In view of the different usage between Vols. 1 and 2 and of the difference from the British Standard, the authors would have been wiser if they had emphasized their own meanings for the terms, instead of merely indicating them in passing.
w.T.C.

Conferences and Exhibitions

MANCHESTER
Feb. 23-27
Belle Vue
Labex Northem
(U.T.P. Exhibitions, 36-37 Furnival St., London E.C.4)
TEDDINGTON
Feb. 25-26
N.P.L.
Trends in Diffusion Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
OVERSEAS
Feb. 6-11 Paris
Audiovisual Techniques, Electroncoustics \& Electronics Show
(Fed. Nat. Des Ind. Electroniques,
16 rue de Presles, Paris 15)
Feb. 16-19 Tampa Fla. Computer-Aided Circuit Optimlzation
(Dr. G. W. Zobrist, Dept. of Elect. Eng., University of South Florida, Tampa,
Florida 33620)
Feb. 18-20
Philadelphia
Solid-State Circuits Conference
(I.E.E.E., 345 E. 47 th Sto, New York,
N.Y. 10017)

Variable Voltage Reference Source for D.C. Regulators

A design capable of operating from a supply four volts above the regulated output

by Peter Williams*

A d.c. reference voltage may be obtained by passing a constant current through a known stable resistance. Dividing this resistance into steps of known value provides a range of voltages simply calculated from Ohm's law. Making one of the resistors continuously variable will give intermediate values of voltage. The accuracy of setting may be as high as 1% depending on the resistors used.

Although this approach has been used successfully in designs for high-performance regulators, the provision of the constant current presents some problems. Fig. I shows two methods whereby a constant current produces an output voltage proportional to a variable resistance, both using a high-gain amplifier with differential inputs. For use as a voltage regulator the amplifier would need a high current capacity and low output resistance in one direction only, but applying the design techniques of low-drift d.c. amplifiers is often beneficial. Thus Fig. 1 (a) is seen as series voltage negative feedback and Fig. 1 (b) as shunt voltage negative feedback.
The second form is often preferred because the virtual earth at the inverting input ensures that variations in output voltage due to a change in the reference resistance do not affect the circuit defining the reference current. Similarly the constant potential at the inputs removes the need for giving the input stage a high commonmode rejection ratio. Against this it can be seen that the main supply which the circuit is to regulate, and that supplying the reference current, must be of opposite polarity.

In contrast, the method indicated in Fig. 1 (a) would place higher demands on the reference current supply, and on the common-mode rejection capability of the amplifier, because the change in voltage at the non-inverting input is large (being equal to the change in output voltage). The former effect can be eliminated by replacing the variable resistance by a potential divider such that a constant total resistance appears in series with the current generator.
To take the maximum advantage of having current reference supply of the same polarity as the output, it is worth trying to derive the reference current from the main supply. The circuit described here attempts to provide this with maxi* Paisley Coliege of Technology

Fig. I. (a) Arrangement where supply for reference current is of same polarity as that required for the regulator.
(b) Using shunt voltage negative feedback reduces common-mode problems and makes design easier, but a separate supply is needed for the reference current.
mum efficiency, i.e. the minimum required supply voltage shall be as close as possible to the maximum regulated output voltage. This condition ensures the smallest possible dissipation in the output transistors, and minimizes the specifications required of the transformer and other components in the power supply.

Practical design

The suggested circuit is shown in Fig. 2. It is derived from a circuit that is equivalent to a constant-current diode, the dual of a zener diode'. A bipolar transistor for Tr_{2} is not well-suited to this particular form of the ring-of-two reference since the base current would constitute a small but significant load on the potential divider. Here the uni-polar f.e.t. in which the gate current is limited to the very low leakage achievable with silicon devices is much to be preferred.

The choice of zener diode is determined by a conflict of several desirable characteristics. (1) The voltage across the device should be as large as possible to maximize the value of R_{1} and hence the stability of current against supply changes. (2) The device should ideally be

Fig. 2. Full circuit for voltage reference source. R_{1} is chosen to provide a current of ImA in the chain of resistors represented by R_{2}, R_{3}. A variable resistor may be used to set the curremt precisely $-R_{1} \approx 2.5 k \Omega$.

Fig. 3. Graph of drift with temperature change against operating current for zener diodes.
chosen to have a temperature drift of voltage that cancels that on the baseemitter of Tr_{1}. (3) The voltage drop across R_{1} should be as small as possible to allow the circuit to operate from supply voltages as close as may be to the required output reference voltage. (4) The slope resistance of the diode should be low to reduce its contribution to the supplyinduced charges in output. These conditions cannot be met simultaneously with existing diodes and it was considered most important to ensure best temperature stability with maximum efficiency.
The performance in respect of supply changes is still adequate and can be made excellent by known methods of compen-
sation ${ }^{2}$ or the conversion of either or both transistors into cascode pairs. ${ }^{3}$ The writer is much indebted to Emihus Ltd for permission to publish Fig. 3. It can there be seen that at an operating current of 5 mA the temperature drift is typically $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C} \pm 10 \%$ for diodes between 2.7 V and 4 V breakdown. This figure is within the range observed for the drift in base-emitter voltage of silicon transistors.

To allow sufficient gate-drain voltage for Tr_{2} (that it shall operate above its knee with consequent high dynamic output resistance), the gate is tapped some way down the chain of resistors simulated by R_{2} and R_{3}. The former may be four resistors each of $1 \mathrm{k} \Omega$ in series when the latter would be sixteen such resistors. With a current of 1 mA to provide a maximum reference voltage of 20 V , the value of R_{1} requires to be somewhat in excess of $2 \mathrm{k} \Omega$.

The semiconductor devices alone were subjected to a range of temperatures from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ for supply voltages between 24 V and 34 V . Maximum

Fig. 4. (a) With $R_{5}=2.2 \mathrm{M} \Omega$ the circuit is over compensated for rapid increase in supply voltage (P to Q). Selfheating of transistors at higher voltage gives small rise in output (Q to R). With supply rapidly reduced to original value (R to S) the output rises further. On cooling, the output voltage returns to its original value. (b) Positive coefficient of voltage change with respect to temperature $\left(\approx+0.025 \% /{ }^{\circ} \mathrm{C}\right)$.
The zener bias current was not optimized.

Fig. 5. Simple way of employing the voltage reference in a regulator.
stability against supply voltage change was obtained by adding the compensating resistor R_{5} between the emitter of $T r_{1}$ and the source of $T r_{2}$. For optimum stability against long term changes the value of resistance R_{5} must be slightly lower than that needed to compensate for the direct voltage-induced changes. This leads to an initial over-compensation, if the voltage changes instantaneously, with a return to a more exact compensation after a delay dependent on the thermal time-constant of the transistor used. With care the output may be adjusted to be well within $\pm 0.1 \%$ for supply voltages between 24 V and 34 V . This performance is particularly good in view of the closeness with which the supply voltage is allowed to reach that across the reference chain. The relevant details are given in Figs. 4(a) and 4(b). It appears that care in the choice and operating current of the zener diode would be worth while since, on the assumptions made above, drifts of as little as 0.1% for temperature changes of 10° might be attainable.

Application

Fig. 5 shows the way in which the reference voltage circuit may be used in the design of voltage regulators. For an ideal amplifier the reference voltage is unloaded by its presence, and the output voltage is forced via the feedback loop to equal the reference voltage i.e. $V_{o}=V_{\text {ref. }}$. With a practical amplifier (such as the readily available integratedcircuit operational amplifiers) there are thus two distinct sources of error: (1) the input current lowers the reference voltage; (2) the offset voltage at the input leads to a differential between this modified reference voltage and the actual output.

An output stage consisting of one or more emitter followers allows the output voltage to be fed into as low a load resistance as required. This leaves the properties needed of the amplifier as: (a) very low input current, at least one hundred times less than the reference current of 1 mA ; (b) the voltage gain should be high enough and the offset voltage low enough that the input differential is less than one hundredth of the reference voltage.

The final requirement of the amplifying stages is that they shall operate from as low a supply voltage as does the reference circuit. It is this that places restrictions on the choice of amplifying circuits and for which special designs may be needed.

REFERENCES

1. P. Williams "Letters to the Editor" Wireless World, September 1966, p. 456.
2. J. C. Rudge, "Letters to the Editor", Wireless World, November 1966, p. 610.
3. "A d.c. Reference Voltage with Very High Rejection of Supply Variation" by P. Williams, Proc. I.E.E.E.; January 1968, pp.118-119.

Telecine
 Film Corrector

The problem of varying density in films and slides-particularly news films-televised by broadcasting organizations has been tackled in an automatic compensating device for telecine cameras just introduced by Marconi. The main idea is to free the camera operator from continual manual correction of picture blacks and whites, but in addition the compensator is claimed to have a faster response than a human operator and to result in a more consistent picture quality.

Called the Auto-Light, the equipment is designed to assess the picture content and to make appropriate adjustments to black and white levels. It acts on the central 64 per cent of the picture area to avoid errors resulting from edge information.

The device controls the white picture level as follows. It detects the peak level of the signal from the telecine camera, and then operates a servomotor-controlled light filter in the film or slide projector lamphouse to bring this level to the normal white picture level. The range of control is limited so that the unit will not counteract an intentional "fade to black". Correct black level is maintained by electronically clamping the peak black level of the camera signal to a standard black level. Here again, the range of control is limited so that scenes without any peak black content can be transmitted.

An exceptional scene may demand manual adjustment of black and white. In this case, the camera operator can override the automatic corrector by pressing a button. The equipment is suitable for all line standards.

The equipment fits in a standard 19 -inch rack and consists of six solid-state modules, five inches high, to be added to the control unit of Marconi black-and-white or colour telecine cameras. It has its own power supply. If this should fail the corrector is automatically by-passed with no interruption of transmission.

Magnetic Recording Techniques for Colour Television

Educational broadcasting convention report

by Aubrey Harris,* m.I.E.E

The National Association of Educational Broadcasters (N.A.E.B.) is an organization serving the needs of the non-commercial educational radio and television broadcasting stations, production centres and closed-circuit educational television installations in the U.S.A. Every year a convention is held which includes meetings on production, engineering and legal aspects of educational television as well as an extensive equipment exhibition.

The whole convention is patterned somewhat after the N.A.E.B. conventions, held every spring, the latter of course serving the interests of the commercial broadcasting stations. The recent N.A.E.B. convention, the 45 th, was held in Washington D.C., from 9th to 12 th November.

Some of the most significant introductions to the show were by Panasonic (Matsushita of Japan) of their new video tape equipment. Two new colour v.t.rs were demonstrated, both of which used the new Japanese "Type I Standard" specifcations for $\frac{1}{2}$-inch machines. The tape speed is $7 \frac{1}{2}$ inches per second, the two-head helical scanning angle is $3^{\circ} 11^{\prime}$, audio track width 1 mm and control track width 0.8 mm ; resolution is at least 240 lines. Most of the major electronics manufacturers in Japan have apparently developed prototypes to these standards and marketing of production versions is due at the beginning of 1970.

The pictures shown from the Panasonic recorders were to full N.T.S.C., 525 -line, colour standards, without external adaptors and were of excellent quality. We saw the same quality colour pictures from a $\frac{1}{2}$-inch recorder as could only be obtained from a 2 -inch recorder less than two years ago.

Of the two machines, one was a reel-toreel recorder with a one-hour recording time and the other was a magazine loading machine with a capacity of 30 minutes per magazine. Both the machines use identical formats, and tapes are therefore interchangeable and have virtually the same specifications: black and white, resolution 270 lines, signal-to-noise ratio, 40 dB ; colour, resolution 240 lines, signal-to-noise ratio 30 dB , chrominance bandwidth 450 kHz .

Operation is simple: the magazine is pushed into a slot in a hinged cover, the cover is lowered and the "play" button

[^12]pressed. Automatically, the tape is threaded around the head drum and in a few seconds the picture appears. The magazine is about 1 -inch (24 mm) high, $10 \frac{3}{4}$ inches (269 mm) long and $6 \frac{1}{2}$ inches (162 mm) deep, its weight is 1 lb 5 oz (600 grammes). The recorder itself is 15 inches (380 mm) wide, 14 inches (355 mm) deep, 5.2 inches (132 mm) high and weighs only $33 \mathrm{lb}(15 \mathrm{~kg})$.

This type of magazine loading v.t.r. seems bound to have a very great impact in the educational, industrial and domestic markets, most likely at the expense of the EVR system of CBS and Motorola and of the more recently announced RCA SelectaVision. Certainly, the $\frac{1}{2}$-inch v.t.r. showed far higher quality colour pictures than have yet been demonstrated on the EVR. Further, the facility exists with the v.t.r. of making one's own recordings on the same machine as is used for playback. Whereas, with the SelectaVision or EVR system, the playback tape or film has to be produced by an agent of the manufacturer. This, of course, does not permit immediate playback of original material

Fig. I Bifilar tape winding system of contact printing.

Fig. 2 Master and duplicated slave tape outputs after duplications at a short wavelength $(1.94 \mathrm{~m})$. The same results are obtained at longer wavelengths.

The Panasonic (Matsushita) magazine loading v.t.r. The unit is built to the specifications laid down in the Japanese Type I Standard for $\frac{1}{2}$-inch video tape recorders. The magazine illustrated contains enough tape for recording and reproducing a 30 -minute programme.
produced by the end-user due to the processing time. Also the cost of making a copy of an original for the EVR is said to be economical only in quantities of $50-100$ or more and with the SelectaVision in numbers over 2,000 .

Duplication

Another development by Panasonic is related directly to this question of making v.t.r. duplicates inexpensively. The Video Tape Printer copies black and white or colour video tapes, audio tapes or computer data tapes by contact within a $60 \cdot \mathrm{~Hz}$ transfer field.
In operation the master tape is wound at high speed, in a bifilar fashion, on to a copying reel, in-contact with an erased slave tape with the oxide coated sides of both touching (Fig. 1). As the two tapes are fed to the copying reel a pressure roller ensures that no air is trapped between the master and slave and that the two are in close contact. When the two tapes are completely wound together on the copying reel a lowfrequency (60 Hz) transfer-field coil is energized while the copying reel turns slowly. When the transfer is complete the reels are reversed and the master and slave rewound on to their original reels. The complete winding, copying and rewinding process takes about two minutes for a one-hour video tape, a 30 -to- 1 time reduction compared to conventional dubbing.

Fig. 3 Optical arrangement of $R C A$ single-vidicon tube colour television camera.

The master tape must have high coercivity so as not to be erased by the transfer-field during the copying process; the slave tape can be any conventional type normally used. The number of copies obtainable from one master is said to be several hundred. Fig. 2 shows the relative output of the master and slave tapes with an initial drop in level of the master of about 1.5 dB or so during the first copy and virtually no further loss during further duplications.

As the copying operation is a contact process the copied tape is a "mirror-image" of the master; it is therefore necessary for the master to be made as a mirror-image of the tape finally required. A special v.t.r. is required for this in which the tape is run in the opposite direction from normal. Another solution might be (depending on whether tapes with the correct characteristics can be developed) to make the master on a normal v.t.r., use this to make a "reversed-master" on the video contact printer and then use the reversed-master to produce the slave tapes.

While in the general subject area of video tape recording, it is worth noting a very useful feature incorporated by International Video Corporation in three of their recorders, the IVC-800, IVC-825 and IVC900. By placing a special reproduce head as well as the normal combined record/ reproduce head on the rotating video head drum, it is possible to monitor the tape while it is actually being recorded (a similar feature to that provided on many audio tape recorders). On the v.t.r. this gives a continuous check of video quality and provides an immediate indication should the recording head become blocked.

Magnetic-dise, recorder

Another device which seems likely to have wide acceptance in the educational and maybe the broadcasting fields is the magnetic-disc recorder. Ampex showed their DR-10 which has the capability of recording on one single disc up to 2,400 individual pictures (frames) on concentric, contiguous tracks or 80 seconds of continuous video information. The recordings may be reproduced in still frame, in either forward or reverse at normal speed, in slow-motion by playing each track more than once, or at high. speed by skipping alternate frames on playback. The same latter effect can be obtained, with economy of recording material, by recording every second (or every third, fourth or fifth) frame from a camera on adjacent tracks and playing these back in sequence at the regular frame rate. An interesting demonstration showed an ice cube melting at an accelerated rate and then subsequently changing back from water to ice!

Apart from fast and slow-motion effects the disc recorder is useful as a magnetic disc version of an "instant-recall slideprojector". For this application, each track on the machine can be recorded with a still frame caption, station identification card, test pattern, photograph, etc. Any frame may be recalled after any other within one second maximum, and in considerably less time for more-nearly adjacent tracks. Considerable time and effort can be saved by recording on to the disc with a camera directly from art-work compared to the normal system at present used where this art-work is first photographed by a $35-\mathrm{mm}$ camera, the film is developed then printed, the positive is mounted in a frame and the mounted slide is inserted into a slide projector (often inverted or reversed!)

The discs used are highly polished, magnetically coated, metal discs permitting disc and head life in excess of 1,000 hours each. Both sides of the discs may be recorded upon without mutual interaction. Disc speeds may be either one revolution per field or one revolution per frame. The time-base stability is ± 50 nanoseconds, bandwidth 4.2 MHz , and signal-to-noise ratio 40 dB .

Colour cameras

The two main factors which have prevented the use on a larger scale of colour television cameras in education and industry are probably cost and operational complexity. It is interesting to note that a single remedy could be the cure for both: simplicity. At the 1968 N.A.E.B. convention RCA introduced their single-vidicon colour television camera, this year an improved version was shown and many more details were given.

The great advantage operationally of a single-tube camera is that the nightmare of registration of two, three or four scanned rasters becomes non-existent. Instead of having to adjust heights, widths, linearities and positions of four rasters (32 controls) every time the camera is used, with a single-tube only six controls need be provided and they can be preset, needing adjustment on only very few occasions.

At the heart of the optical system is a pair of striped dichroic filters (Fig.3). The filters have alternate, narrow stripes of dichroic material and clear material. Each of the two filters has a different type of dichroic material; one is blue reflecting (passing red and green light), the other type
is red reflecting (passing blue and green light). Thus each filter will pass green light over its entire area. The two filters, which have their stripes at the same spacing as each other, are placed in contact in such a position in the optical path that the direction of line scan is perpendicular to the bluereflecting stripes. The red-reflecting stripes are placed at 45° to the line scan direction. Consider for a moment that the camera is trained on a totally blue-coloured object. The light passing through the blue-stop dichroic will be alternately transmitted to, or reflected away from, the pick-up tube. Thus blue light entering the tube is amplitude modulated at a carrier frequency related to the number of stripes on the filter, the angle the stripes make with the line scan and the rate of travel of the scanning beam in the scan direction. The choice of parameters in this case provides a blue carrier frequency of 5 MHz . The red carrier frequency is generated in a similar manner by the red striped filter; however, as this filter is placed at 45° to the scan direction instead of perpendicular to it, the red carrier is $\cos 45 \times 5 \mathrm{MHz}=3.5 \mathrm{MHz}$ (approximately).

The output waveform from the camera tube is processed and signal information at 5 MHz is treated as blue signal, that at 3.5 MHz as red signal and that below 3.2 MHz as green signal. The green signal takes two paths. One through a 500 kHz low pass filter is used as the green matrixing input (-Em). The filter is needed to match the bandwidths with the red and blue signal channels. The second path for the green signal is not further reduced in bandwidth but is used as the luminance signal (-Ey). A one-microsecond delay line is needed to match the timing of the luminance signal with the narrow bandwidth chrominance signals.

The basic camera encoder makes use of many simplifications. $R-Y$ and B - Y chroma modulation is used to allow the elimination of the colour-burst modulator and accompanying phasing circuits with a consequent reduction in cost. The burst flag signal is modulated directly in the $B-Y$ balanced modulator together with the $B-Y$ matrixed video signal.

Another simplification is the utilization of a sub-carrier oscillator which is not locked to the sync generator. However, a switch is provided to allow the connection of an external source of sub-carrier signal phase-locked to external sync for instances where the random colour interlace of the non-locked sub-carrier would prove objectional.

Index to Vol. 75

The index to Vol. 75, January-December 1969, will be available when the March issue is published on February 16th.

Several appointments were recently announced by CETA Electronics Ltd, of Poole, Dorset. David Dillistone has become chairman. Educated in America and at Oxford University he began his career in electronics with E.M.I. where he worked on missile systems. He then became a senior research engineer with Plessey before moving into management consultancy with SIGMA (Science in General Management Ltd) where in 1965 he became projects manager. Since 1967 he has been with Hoskyns \& Co., management consultants, latterly as a director. Peter Horne has joined CETA as chief development engineer. He was at one time with Newmarket Transistors but immediately prior to joining CETA was with Plessey as a group leader. Arthur E. Crump, who has contributed several articles to Wireless World (one is in this issue), is appointed instrumentation manager with CETA. He has worked with G.E.C. and Redifon and was latterly a principal engineer with Plessey where he was responsible for the project management of remote control systems.

George Foot, M.I.R.E., last year rejoined Cosmocord after an absence of five years and has now been appointed chief engineer of the Electrical Division. Mr. Foot, who is 46 , originally joined Cosmocord in 1953. After eleven years he left and went to Amplivox where he stayed for one year before going to S.T.C. at New Southgate where he worked in the telephone switching division from 1965 to 1969.

Peter C. McNeill, B.Sc., Ph.D., M.I.E.E., appointed chief engineer designate of British Insulated Callender's Cables Ltd, has, since 1965, been with the National Research Development Corporation, where he was manager of the electrical engineering and electronics group. He was particularly concerned with the provision of financial support for development work on microelectronics and superconducting electrical machines. Dr. McNeill, who is 44, graduated in
electrical and mechanical engineering at Queen's University, Belfast, and joined the British Thomson Houston Company, Rugby, as a graduate apprentice in 1950. He subsequently joined the staff of BTH Research Laboratory, where initially he worked on microwave valves and later on electrical discharge devices. Queen's University awarded him a doctorate for his work in this period. In 1960 he joined Elliott Brothers (London) Ltd, as head of the valve research group. Later he became technical manager, radiation sources and detectors department.

Brian Steel, who joined S.E. Laboratories (Engineering) Ltd, of Feltham, Middx, five years ago, has now been appointed sales director covering home and export sales in the industrial, medical and laboratory instrument fields. He started his career with B.A.C. at Weybridge as an apprentice and during his fourteen years with the company was engaged on environmental testing on guided weapons and the design and development of flight test instrumentation, notably on the BAC 111 and VC 10 aircraft.

Robin Smith-Saville, B.Sc., Ph.D., M.I.E.E., has joined AIM Electronics Ltd as technical director. He was a lecturer at Manchester

Dr. Robin Smith-Saville

University and has for some time been assisting the company as an electronics design consultant. He developed the circuitry of the oscilloscope sampling adaptor manufactured by AIM. Dr. Smith-Saville gained industrial experience with Texas Instruments Ltd in Bedford, where he started as a technical assistant in circuit design straight from school, and subsequently with Ferranti Ltd. in Manchester. He studied for his degree in Physics at Manchester University which he obtained in 1962 and was awarded a doctorate for work on techniques for the measurement of fluorescence lifetime of the order of a nanosecond.

Harold Stanesby, F.I.E.E., Hon.C. G.I.A.. deputy director of engineering in the Post Office since 1960, has been transferred to the newly formed Ministry of Posts and Telecommunications as director of radio technology. The Directorate of Radio Technology is responsible for dealing with all technical matters relating to the orderly use of the radio-frequency spectrum. It also has overall responsibility for the technical direction of the interference investigation service and the tracing of illicit transmissions; although most of the field work on these problems will continue to be undertaken by the Post Office under contract to the Ministry. Mr. Stanesby joined the Post Office Radio Laboratories at Dollis Hill as a youth-in-training in 1924. Prior to his appointment as deputy director of engineering he had been staff engineer in the radio planning and provision branch of the Engineering Department for eight years. Two deputy directors of radio technology in the new Ministry have been appointed. They are: C. W. Sowton, O.B.E., B.Sc.(Eng.), F.I.E.E., A.C.G.I. and T. Kilvington, B.Sc.(Eng.), F.I.E.E., both formerly of the Post Office. Mr. Sowton had been staff engineer in the Overseas Radio Planning \& Provision Branch for the past eight years and Mr. Kilvington staff engineer in charge of the Inland Radio Planning \& Provision Branch since 1963.
A. A. Diggens, who has been with Electronic Instruments Ltd, of Richmond, Surrey, since 1960, has been appointed chief engineer. He was mainly concerned with the company's development of water treatment analysers and since 1967 has been chief engineer of the Twickenham factory where the instruments are manufactured.

Robert C. G. Williams, O.B.E., Ph.D., F.I.E.E., chief engineer of Philips Electronic \& Associated Industries Ltd, has been appointed visiting professor of electronics in the Department of Electrical \& Control Engineering in the University of Surrey. Dr. Williams joined
the Philips organization in 1946 having previously spent 15 years with Murphy Radio, latterly as chief engineer. Prior to entering the industry in 1931 he had spent a year on the staff of Imperial College of Science \& Technology.
S. R. Wilkins, F.I.E.R.E., A.M.I.E.E., who recently resigned as deputy chairman and technical director of Avo Ltd, has joined Fleming Instruments Ltd, of Stevenage, as joint managing director. A. W. Jones, the founder of the company, remains as chairman and joint managing director. Mr Wilkins, who is 58 , joined Avo as a development engineer in 1934.
J. R. Nowicki, F.I.E.R.E., has joined Gresham Lion Electronics Ltd as senior engineer in the Power Systems Division. Mr. Nowicki was previously a senior applications engineer with Mullard which he joined in 1956. Since 1964 he has been in Mullard's Central Laboratory where he was concerned with the application of semiconductor devices.
E. Swinney, F.I.E.E., has been appointed by Marconi-Elliott Avionic Systems Lid to the newly created post of general manager, Basildon, with responsibility for all of the company activities at a number of sites in the Basildon area. Mr. Swinney, who joined the Royal Air Force as an apprentice at Halton in 1924, was closely associated with the early developments of radar equipment in the R.A.F. at the Air Ministry Research Station, Bawdsey, and was appointed Chief Radar Officer of the N.W. African Air Force in 1942. Two years later he became Chief Signals Officer at the Central Fighter Establishment, moving to the Air Ministry in 1949, as head of the Air Defence Radar Branch. He resigned from the R.A.F. in 1955 with the rank of Wing Commander, and joined the Aeronautical Division of the Marconi Company as a senior project engineer. He was appointed systems manager, and later deputy manager of the Aeronautical Division.

Welwyn Electric have announced three senior appointments to their recently formed Printed Circuit and Interconnections Division. D. M. Cadenhead becomes production manager. He was latterly with the Radar Division of the Plessey Co. Ltd based at Addlestone, Surrey, and prior to that held positions with Solartron and Hughes International. P. Hebden, who joined Welwyn in 1967, is appointed sales manager. H. Banner, appointed technical manager, joins Welwyn from Mills \& Rockley (Electronics) Ltd of Skelmersdale, Lancs, where he was technical manager —printed circuits.

New Products

F.E.T. Operational Amplifier

Computing Techniques Lid have introduced a new operational amplifier with chopper drift correction and a f.e.t. transistor at the input stage, type A8-2. It has an open loop gain of 10^{8} and a typical voltage offset, adjustable to zeroexternally, of $10 \mu \mathrm{~V}$ with a temperature drift of $0.2 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$. Input bias current is 50 pA with a temperature drift of 0.5 pA per ${ }^{\circ} \mathrm{C}$. Maximum output voltage and current with $2.5 \mathrm{k} \Omega$ load are $\pm 11 \mathrm{~V}$ and $\pm 5 \mathrm{~mA}$ with chopper ripple of $20 \mu \mathrm{~V}$ peak-to-peak from an output impedance of 500Ω. The amplifier (plan area is $1.5 \times 2.4 \mathrm{in}$., depth is 0.85 in .) is fully protected against short circuits or supply reversal, is inverting only and is fully stable under normal conditions of feedback and load with a built-in gain roll off of 20 dB per decade. Suitable as a long term precision integrator or low-level signal amplifier, the A8-2 is all silicon solid state and is fully encapsulated in epoxy resin. Computing Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leatherhead, Surrey. WW306 for further details

F.E.T. Stereo Tuner

Tripletone Manufacturing Co. Ltd are marketing their first solid-state f.m. stereo tuner. It comprises f.e.t. tuner, i.f. strip, decoder, emitter followers and power unit all in one chassis. The use of dual gate f.e.t. reduces drift and improves signal-to-noise ratio. Mono-to-stereo switching is automatic, and if a mono version is purchased, a decoder unit is available separately. Frequency coverage is $88-108 \mathrm{~Hz}$, sensitivity is $2.3 \mu \mathrm{~V}$ for 20 dB quieting, bandwidth is 210 kHz , aerial input is $70-80 \Omega$ coaxial, a.f.c. hold is 400 kHz , output is $0-1 \mathrm{~V}$ via emitter follower and cross talk is better than 30 dB at 1 kHz . Chassis model measures $11 \times 7 \frac{1}{2} \times 3 \frac{3}{4}$ in. high, cabinet model

measures $13 \times 9 \times 5 \frac{1}{4}$ in. high. Chassis model weighs 6 lb , cabinet model 9 lb . The Tripletone Manufacturing Co. Ltd, 241a The Broadway, Wimbledon, London S.W. 19.

WW321 for further details

Solid-state Multiplier Sources

Microwave and Electronic Systems Ltd have announced a new range of multiplier sources covering the frequency range 2.5 to 8.5 GHz , using step diodes with electronic tuning to 600 MHz . They measure $1 \times 1 \frac{1}{2}$ $\times 3 \frac{1}{4}$ in. and weight $60 z$. Typical performance includes a frequency of 3.5 to

4.25 GHz , tuning voltage of $\pm 15 \mathrm{~V}$ or 0 to $\pm 30 \mathrm{~V}$, power output of 40 mW minimum, input of 2 W and operating temperature of -40 to $+80^{\circ} \mathrm{C}$. Phase-lock and crystalcontrolled variants are also available. MESL, Lochend Industrial Éstate, Newbridge, Midlothian, Scotland.
WW324 for further details

Indicator Tube Driver

K.G.M. Electronics Ltd have introduced their Series 600 Driver Package, a complete drive system for most end- and sideviewing cold-cathode indicator tubes. Tubes with decimal point characters and tubes with separate anodes are alike catered for. The package uses dual in-line t.t.l.i.cs and has a decade counter, register and decoder/driver, complete with indicator tube. Supplied with just decoder/driver and tube, it will provide a decimal display from a parallel binary input. The register stores and updates the displayed value. Used with the counter, counting occurs during a constant display which is updated when the counting is complete. Maximum counting

rate is 18 MHz . If used with a binary input, the register stores the displayed value and allows the input signal to be changed or removed. A binary data highway allows the counter (or register) to produce an ancillary binary output, and the same highway will take input signals direct to the decoder (or register) when the counter is not fitted. By using various types of connectors-spills, edge-connector and socket etc-the package can be made compatible with the main equipment receiving it. K.G.M. Electronics Ltd, Clock Tower Road, Isleworth, Middx. WW319 for further details

Transistors for V.H.F. Transmitters

Two new medium-power transistors for use in class " B ' amplifiers of v.h.f. transmitters and in frequency- or amplitudemodulated systems, have been introduced by Mullard. The BLY85 operates with a supply voltage of 13.8 V , and so is suitable for use in mobile equipment powered by car batteries. With an input of 0.4 W , the BLY85 will give an output of 4 W in a typical f.m. system at 175 MHz , while the BLY97, 24-V version of the BLY85, requires an input of 0.2 W to give the same output in the same system. In an a.m. system and with a supply voltage of 13.8 V , the BLY97 will provide an output of 2.5 W . Mullard Ltd, Mullard House, Torrington Place, London W.C. I.
WW322 for further details

10 Hz to I 0 MHz
 Sinewave Source

Britec Ltd have introduced the Preston X-Mod 134 sinewave signal source. Output range is variable from 10 Hz to 10 MHz in six decades and output impedance is 50@. The unit provides twelve switch-

Q NEW

Plug-In Oscilloscopes

150 MHz Bandwidth

USABLE performance to 150 MHz or 90 MHz . Combined mainframe and plug-in bandwidths are specified at minimum deflection factors with or without probes. With . . .

MORE

Higher sensitivities are achieved at greater bandwidths than ever before. 5 $\mathrm{mV} / \mathrm{div}$ at $150 \mathrm{MHz}, 1 \mathrm{mV} / \mathrm{div}$ at 100 MHz and $10 \mu \mathrm{~V} / \mathrm{div}$ at 1 MHz. With . . .

MORE

Each mainframe accepts up to four plug-in units. Thirteen plug-ins are currently available to cover virtually all multi-trace, differential, sampling, and X-Y applications. Plus . . .

NEW Convenience.

Greater convenience in all areas of instrument operation. Features such as Auto Scale Factor Readout, lighted pushbutton switching, and true automatic triggering assure faster, more accurate, less complicated measurements.

7504

sweep, " B " sweep, zndently. A single--3matism adjustment, omplete the control

CALIBRATOR

A multi-function generator usable as a "standard" for calibration of voltage and current GAIN, time/div, and probe compensation. The output is DC or AC (1 kHz or variable) voltage or current (fixed at 40 mA). The amplitude accuracy is within 1% and the time accuracy is within 0.5% at 1 kHz .

TRIGGERING

The signals from both vertical plugins are coupled through a mainframe logic circuit and made available to each horizontal plug-in, selectable from LEFT channel, RIGHT channel, or slaved to VERTICAL MODE. The latter frees the operator from manual source changes during single-trace operation and, in conjunction with the P-P AUTO TRIGGER MODE in the time-base units, provides true hands-off triggering during routine measurements.

FOUR PLUG-IN CHANNELS

The modular approach is the answer to instrument flexibility. With dualtrace switching in the mainframe amplifiers, each plug-in can be "specialized" in function and operate in combination with other units. Thirteen plug-ins are currently available for the 7000 -Series. Together, they represent the widest range of performance options for multi-trace, differential and sampling applications available today.
plifier
4 ns tr) in the in the 7504.
at full band.

7 A22 High-Gain Differential Amplifier
Bandwidth-DC to 1 MHz with selectable upper and lower -3 dB points.
Min deflection factor- $10 \mu \mathrm{~V} / \mathrm{div}$ at full bandwidth.

7B51/7B50

Time-Base Units for the 7504

$5 \mathrm{~ns} / \mathrm{div}$ maximum sweep speed. Operable singly or in combination for delaying sweep capability.

7M11 Delay Line

Unit

Two 75 ns, 50-88 delay lines. Trigger selection from either line.

7511 Sampling Amplifier

Accepts the plug-in sampling heads for bandwidths to 14 GHz (25 ps tr).

7T11 Random Sampling Time Base
$10 \mathrm{ps} / \mathrm{div} 105 \mathrm{~ms} / \mathrm{div}$ sweep range, accomplished with equivalent-time and real-time techniques.
Triggering to 12 GHz .

7704

AUTO SCALE FACTOR READOUT

A character generator senses the position of volts/ div, amps/div, time/div, polarity, and uncalibrated variable controls, then accounts for probe attenuation and displays the correct scale factors for all channels directly on the CRT.

DISPLAY CONTRC

Three intensity controls adjust " A ' and READOUT brightness indep" focus control, a screwdriver asti! and a two-position beam finder c group.

BRIGHT TRACE

The acceleration potentials are 24 kV for the 7704 and 18 kV for the 7504 for improved trace visibility. Single-shot photographic writing speed is $3300 \mathrm{~cm} / \mu \mathrm{s}$ (7704) measured with the standard P31 phosphor, the new C-51 camera and 10,000 ASA film. The display area is $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ with a parallaxfree illuminated graticule.

DUAL-TRACE SWITCHING

Both the vertical and horizontal maintrame amplifiers are "dual trace" providing a unique level of flexibility with plug-in combinations. A relatively small number of plug-ins can then meet a wide range of application requirements. The CHOP and ALT modes permit simultaneous displays of delaying and delayed sweep, and, through switching logic, may be "slaved" to provide a functional dual-beam type of display.

$7 A 16$ Wide-Band An Bandwidth-DC $10 \quad 150 \mathrm{MHz}$ (2) 7704: DC to 90 MHz (3.9 ns tr) Min deflection factor- $5 \mathrm{mV} / \mathrm{di}$ width.

7 A11 Captive FET Probe Amplifier Bandwidth-DC to 150 MHz (2.4 ns tr) in the 7704; DC to 90 MHz (3.9 ns tr) in the 7504. Min deflection factor- $5 \mathrm{mV} /$ div at full bandwidth.

7 A12 Dual-Channel Amplifier
Bandwidth-DC to $105 \mathrm{MHz}(3.4 \mathrm{~ns}$ tr) in the 7704; DC to $75 \mathrm{MHz}(4.7 \mathrm{~ns}$ tr) in the 7504 Min deflection factor- $5 \mathrm{mV} /$ div at full bandwidth.

7A14 AC Current

 Probe Amplifier Bandwidth— 25 Hz to 105 MHz depending on mainframe and current probe;iwo probes available. Min deflection factor- $1 \mathrm{~mA} /$
div at full bandwidth.

C-51/C-50 Trace-Recording Cameras

The cameras offer a new level of operational convenience for mistake-proof trace photography. The guess work normally associated with selection of f stop and shutter speed to match the ASA index and trace brightness is eliminated. After setting the ASA index, the built-in photometer allows a visual correlation of trace intensity to the correct I stop setting and shutter speed. After initial adjustment, a change of f stop or shutter speed will still maintain the same exposure. Focusing is accomplished by two beams of light projected on the CRT which, when superimposed, indicates optimum focus. The insert shows the photometer spot and the rangefinder focusing images.

Two new compact trace-recording cameras have been designed for direct compatibility with the 7000 -Series Oscilloscopes. The C-51 and C-50 cameras are basically identical units, differing only in the lens system. The C-51 has an $\mathrm{f} / 1.2,1: 0.5$ lens; the $\mathrm{C}-50$ uses an $\mathrm{f} / 1.9,1: 0.7$ lens. The C-51 is recommended for single-shot photography at the fastest sweep rates, the C-50 for more general purpose applications. Photographic writing speed of the two 7000-Series mainframes with the C-51 and 10,000 ASA film (without prefogging) is $3300 \mathrm{~cm} / \mu \mathrm{s}$ (7704) and 2500 $\mathrm{cm} / \mu \mathrm{s}$ (7504).

SCOPE-MOBILE ${ }^{*}$ CARTS

The 204-2 Scope-Mobile Cart is specifically designed for the 7000Series instruments. It provides a securing mechanism for the oscilloscope, nine positions of selectable tray tilt, a large storage drawer, storage for five 7000 -Series plug-ins, and large locking-type wheels.

PROBES

The P6053 is a miniature fast-rise 10X probe designed for full compatibility with the 7000 -Series instruments. Input R and C is $10 \mathrm{M} \Omega$, 10.3 pF . Probe risetime is 1.2 ns or less.
The P6052 is a passive dual-attenuation probe designed for measurements below 30 MHz . A sliding collar selects 1 X or 10 X attenuation. Input R and C is $1 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega$, 100 pF or 13 pF . Risetimes are 60 ns (1 X) and 7 ns (10X).

7704 Oscilloscope
£1,167 7504 Oscilloscope £933 7 A11 Amplifier Plug-in £397
7 A12 Amplifier Plug-in 7A13 Amplifier Plug-in £327 £513 7A14 Amplifier Plug-in £268 7A16 Amplifier Plug-in £280 7A22 Amplifier Plug-in £233 7B71 Time-Base Plug-in £320 7B70 Time-Base Plug-in £280 7 B51 Time-Base Plug-in £238 $7 B 50$ Time-Base Plug-in $£ 210$ 7S11 Sampling Plug-in £210 7 T 11 Sampling Time-Base Plug-in £513 7M11 Dual Delay Line Unit £117
204-2 Scope-Mobile (®) Cart $£ 85+£ 11.6 .0$ duty C-51 Trace-Recording Camera
$\mathrm{£} 427+£ 97.4 .0$ duty
C-50 Trace-Recording Camera
$£ 333+£ 75.16 .0$ duty
P6052 or P6053 Probes
$£ 24+£ 3.8 .0$ duty Delivered U.K.

Tektronix U.K. Ltd.

Beaverton House, P. O. Box 69, Harpenden, Herts.
Telephone Harpenden 61251. Telex: 25559 For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 4-14, Foster Street, Sydney, N.S.W. Canada: Tektronix Canada Lid., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A., 91, Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13). Switzerland: Tektronix International A.G., P.O. Box 57, Zug, Switzerland, Rest of Europe and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500 , Beaverton, Oregon, U.S.A.
selected calibrated output voltages ranging from 2 mV to 10 V peak, with a twenty-toone vernier control, and a sync output voltage of $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ peak-to-peak from 10 Hz to 10 MHz , with an output impedance of 5000 ? . Unit has a sync input which allows an auxiliary input to synchronize the waveform output with an external signal so that a second oscillator may be used to modulate the unit or phaselock with it and control a precision phase shift of up to 180°. This unit can be incorporated along with others in the X -Mod range, into an instrumentation system via optional racks; all units in the range have both front panel and rear patchboard connections and feature all-silicon components and plug-in printed circuit boards. Britec Lid, 17 Charing Cross Road, London W.C. 2
WW311 for further details

Integrated Microphoneamplifier

Brim-Exports Lid are marketing a new integrated microphone-amplifier manufactured in Norway by Polar. The Unikum amplifier requires a power supply of 12 24 V d.c., and has a maximum output at 24 V of 10 W into 6 ohms, and at 12 V of 4 W into 4 ohms. The only connections are

two leads to the battery and two to the loudspeaker. The unit can be delivered with talk-back facilities for use as an intercom system, and as a hand microphone or with goose neck for permanent mounting. 'It measures $35 \mathrm{~mm} \times 130 \mathrm{~mm}$. Brim-Exports Ltd, 42 Portobello Rd, Kensington. London Wil.
WW302 for further details.

Rotary Waveguide Phase Changers

New from Flann Microwave Instruments, a 10 -model range of direct-reading rotary waveguide phase changers. The $6-2$ series controls phase change from -360° to
$+360^{\circ}$. The differential phase change is monitored on a drum scale linearly calibrated in degrees. The dielectric phase change element is a low-loss material suitable for medium-power systems. Transitions from rectangular to circular section are multistepped to give the shortest length and lowest s.w.r. Frequency coverage of the various models ranges from $2.6-3.95 \mathrm{GHz}$ to $26.5-40 \mathrm{GHz}$, maximum insertion loss over this range varies from 2 to 4 dB , s.w.r. from less than 1.25 to 1.3 , and power rating from 2 W to 15 W , depending on model. Flann Microwave Instruments Ltd, 9 Old Bridge Street. Kingston-uponThames, Surrey.
WW326 for further details

Polystyrene Foil Capacitors

Polystyrene foil capacitors type KSI7, which are especially suitable for use in frequency-determining and filter networks, have been developed by ITT. The connecting leads are welded to the layers over the whole front which gives the capacitors low attenuation, highly reliable connections even at low voltage, and makes possible low inductance wound construction. They are also claimed to have a uniform temperature coefficient over the whole range and a low dissipation factor at high frequencies. The capacitors have a uniform overall length of 12.5 mm and are available in a range of 350 to 24000 pF with nominal d.c. voltage ratings of 63 V and 160 V . Capacitance values are graded on the E 192 series; they can be supplied in tolerances of \pm $1 \%, \pm 2.5 \%$ or $\pm 5 \%$. ITT Components Group Europe, Standard Telephones and Cables Lid, Edinburgh Way, Harlow, Essex.
WW303 for further details.

Solid-state, Photomultiplier

Power Supply

Designed with the latest photomultiplier tubes in mind, the Brandenburg power unit, model 472 R , is suitable for both bench use and rack mounting. It is completely solid state and is designed for operation from $200 / 250$ volt 50 Hz power supplies. The output can be varied over the range 100 to 2100 volts, maximum current 5 mA with an effective resistance of less than 20? Ripple is quoted as 1 volt $p-p$ and stability over a 24 -hour period is I part in 10^{4} against $\pm 7 \frac{1}{2} \%$ mains change. Drift: 5 parts in 10^{5} per hour, 1 part in 10^{4} perday. Dimensions:

$483 \times 89 \times 248 \mathrm{~mm}\left(19 \times 3 \frac{1}{2} \times 9 \frac{3}{4} \mathrm{in}\right.$.). Weight: 6.35 kg (14 lb). Price, delivered in U.K. or Europe: $£ 125$. Brandenburg Ltd, 139 Sanderstead Road, South Croydon, Surrey.
WW328 for further details

Audio Faders and Potentiometric Controls

Complementing their range of professional studio faders, Penny and Giles are introducing a new range of low cost audio faders and potentiometric controls for use with semi-professional sound mixers, thyristor-

controlled studio lighting, and mobile or temporary installations. Operational Control is over $3 \mathrm{in} .$. resistance values are from 500Ω to $40 \mathrm{k} \Omega$, power rating is 2 W and movement resolution is better than 0.06%. Penny \& Giles Lid, Mudeford, Christchurch, Hants.
WW307 for further details

Precision Trimmer Capacitors

Voltronics Corporation of U.S.A. are marketing their range of trimmer capacitors through Salford Electrical Instruments, a member company of GEC Electrical Components Lid. Capacitors are nonrotating and linearity is better than 1%. The screw stays positioned for simple blind-hole turning and does not move axially: the design is claimed to allow a shorter r.f. current ground path directly to the base which prolongs life to 10,000 cycles minimum, enlarges current capacity up to 2 A , gives high resolution and resetability, wide capacitance range with units ranging from 0.1 to 180 pF and higher Q's
with no self-resonance below 1200 MHz . These components can be supplied with standard glass, quartz and embedded glass dielectrics suitable for printed-circuit or panel mounting. Split stator, differential and extended shaft constructions are among the many available. Salford Electrical Instruments Ltd, Peel Works, Barton Lane, Eccles, Manchester.

WW314 for further details

RC Active Filters

Kemo Ltd are offering a wide range of active RC filters. Frequencies range from 0.01 Hz , and in general, filters have a voltage gain of unity, high ($100 \mathrm{k} \Omega$) input resistance, low ($50 \Omega 2$) output resistance, operate from + and -15 V , and where 1.p. units are concerned, good d.c. drift character-

istics. Standard synthetic derivations available include Tchebycheff, Butterworth, linear phase and elliptic. The range of $1 / 6$, $1 / 3,1 / 2$ and whole octave filters, supplied as units or as complete analysis or equalizer systems, is suitable for environmental engineering. Kemo Ltd, 42 Chancery Lane, Beckenham, Kent.
WW323 for further details

Constant Amplitude Wideband Oscillator

A new wideband test oscillator from Hewlett-Packard, model 654A, covering the range 10 Hz to 10 MHz in six decades has an amplitude stability of $\pm 0.05 \mathrm{~dB}$ (0.5%) over the full range. This kind of flat response should considerably reduce the time consumed when making multipoint frequency response tests by eliminating the need for frequent readjustment of the oscillator amplitude. The exceptionally flat frequency response of this oscillator is obtained by use of a level controlled buffer amplifier between the oscillator circuits and the output amplifier. Output level sensing is by a detector which controls an attenuator (a photo-controlled resistor pad) in the buffer amplifier. A balanced output amplifier is incorporated which enables balanced outputs for $600,150,135$? impedances to be push-button switch selected plus two

single-ended outputs of 50 and 75 im pedance respectively. Maximum output is $+11 \mathrm{~dB}(2.5 \mathrm{~V}$ into 6000), the precision attenuator has an $89-\mathrm{dB}$ range in $1-\mathrm{dB}$ steps, with an accuracy of 0.15 dB on the higher ranges. The centre-zero output meter has an expanded scale with a range of -1 to +1 dB , giving a $0.02-\mathrm{dB}$ resolution for precise incremental adjustment of the output level. Price: $£ 403$. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks.
WW325 for further details

Miniature Dual Power Supply

New from Ancom Ltd, a miniature power supply measuring $2 \times 2 \frac{1}{2} \times 1 \mathrm{in}$. The Ancom DPS-25 is an encapsulated power supply designed to feed small operational amplifier systems where supply voltages are not used as reference potentials. Input is 210 V to 250 V a.c., $50-60 \mathrm{~Hz}$, and outputs are +15 V at 25 mA maximum, and -15 V , not adjustable, at 25 mA maximum, shortcircuit current is $\pm 25 \mathrm{~mA}$, regulation is 0.2 to 0.3 V no load to full load and ripple and noise is $1-2 \mathrm{mV}$ p-p typical. Unit is housed in a shielded metal case with blue finish. Ancom Ltd, Devonshire Street, Cheltenham.
WW318 for further details

Motorized Potentiometer

Rayleigh Instruments Lid are marketing a new panel-mounted motorized potentiometer, MP120P. The unit is fitted with a 10 -speed gearbox having either of two progressions: $10,5,2,1,0.5,-0.01$ r.p.m., or 10,3,1, 0.3-0.0003 r.p.m. Speed setting

is via a 20 click-stop rotating knob, 10 stops for the respective r.p.m. drive speeds and ten intermediate neutral positions to aid manual potentiometer setting via the turns counter. Resistance values range from 10 ? to 100 k " and the potentiometer is of the 10 turn helical type. The unit employs a slipping clutch, and limit switches function at either end of the track. Each unit has a reversible synchronous motor which, in standard models, is $24 \mathrm{~V}, 50 \mathrm{~Hz}$. The moto: may be connected to higher voltages by adding a ballast resistor. Rayleigh Instruments Lid, 271 Kiln Rd, Thundersley, Benfleet, Essex.
WW313 for further details

Solder Creams

Alpha Metals Inc have expanded their line of solder creams, which are now available as standard and special alloy compositions, curable or non-curable, in a variety of viscosities and powder mesh sizes, with resin and acid flux bases in all degrees of flux activation. The creams are claimed to permit close control of deposit size, and to eliminate a separate fluxing process. All solder powders are pre-alloyed for lowest wetting temperatures and highest joint uniformity. Creams are designed for use on continuous or indexed mass production lines. Alpha Metals Inc, 56 Water Street, Jersey City, New Jersey 07304, U.S.A.
WW317 for further details

X-Band Gunn-Diode Oscillator

Silvers Lab have introduced a new X-band Gunn-diode oscillator. Model PM7015X is tunable over the range $8.3-10.5 \mathrm{GHz}$ with output power over 15 mW at midband. The tuning mechanism is GHz -calibrated, and a protection circuit guards against overvoltage or wrong polarity. Silvers Lab, Box 42018, Elektravägen 53, Stockholm 42, Sweden.
WW327 for further details

Miniature Carbon Resistors

ITT have introduced a new range ol carbon composition resistors. The resistors, type numbers RC025 and RC050, are now available in $\frac{1}{4} W$ and $\frac{1}{2} W$
sizes. These ratings apply to up to $70^{\circ} \mathrm{C}$ ambient temperature operation. Resis tance values are from 2.2) to 1.0 M for the $\frac{1}{4} \mathrm{~W}$ series and 2.2 to 4.7 M for the $\frac{1}{2} \mathrm{~W}$ series. Resistors are available with $\pm 5 \%, \pm 10 \%$ and $\pm 20 \%$ tolerances. Features claimed for the resistors include high overload capacity, good h.f. characteristics, low temperature coefficient and full insulation. Further data including performance curves are set out in a trilingual booklet. ITT Components Group Europe, Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex.
WW305 for further details

Multi-Micro
 Coaxial Connector

New from Radiall Microwave Components Ltd, a multi-micro coaxial connector, series MMC. The glass loaded phenolic connector shell, which measures $41.4 \times 14.2 \times 22.70 \mathrm{~mm}$ accepts 26 simple pin and socket contacts or coaxial inserts in any combination. The contacts are first crimped to the cables using standard M.S. tools and then inserted or extracted from the back of the shell which has an insert

retention of better than 5 kg . Both the inner conductor and the screen are individually crimped to the coaxial inserts for high reliability, and the pin and socket contacts are rated at 13 A with a contact resistance of $15 \mathrm{~m} \Omega$. Connector will operate between $125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, and conforms to the environmental specifications of MIL-C39012 and CCTU 10-04. Radiall Microwave Components Ltd, Station Approach, Grove Park Road, Chiswick, London W.4. WW309 for further details

Variable Directivity
 Microphone

Jagor Interelectric Lid has introduced a new variable directivity microphone to the UK market. The Pearl DC 63 capacitor microphone has casing mounted continuously variable controls producing 44 directivity patterns. A microphone head amplifier using a f.e.t. and twin-sided insulated microphone capsule, produces frequency response from 25 to $20,000 \mathrm{~Hz}$, a sensitivity at 1 dyne per sq cm of -56 to -60 dB depending on selected directivity pattern, and a dynamic range of 130 dB . The power source may be a $67 \frac{1}{2} \mathrm{~V}$ dry battery fed to the microphone capsule through a balanced circuit using the symmetrical

signal cable powering system, which permits the use of a screened twin cable to carry the microphone current (0.5 to 0.7 mA) and the output signal current. Suitable for all broadcasting and recording use, the unit measures $150 \times 31 \mathrm{~mm}$, has stand adaption or can be hand-held. Jagor Interelectric Ltd, Mercury House, Hanger Green, Ealing, London W. 5.
WW316 for further details

Silicon Photodiode

A new silicon photodiode has been introduced by EMI's Electron Tube Division. Type SPDl is all solid state and claims a fast rise time and wide spectral range, with low noise levels ensured by the use of an effective guard ring structure. The active area is one cm^{2}, making it a general-purpose detector with broad applications to sites where space and power are at a premium. EMI Electronics Ltd, Hayes Middx. WW308 for further details

Zero Temperature

Factor Toroids

Salford Electrical Instruments have added Feralex ferrite ring cores to their range of toroids. The new \mathbf{R} grade has a permeability of +0.5 to -0.5 p.p.m. $/{ }^{\circ} \mathrm{C}$ over the range of +20 to $+70^{\circ} \mathrm{C}$. Nominal permeability is 2000 and the cores can be supplied graded. The material retains its fundamental properties up to 300 kHz and thereafter may be used for pulse transformer applications up to several MHz . Salford Electrical Instruments Ltd, Times Mill. Hevwood. Lancs.
WW304 for further details

Solid Tantalum Capacitors

A cylindrical capacitor with an unusually low dissipation factor has been developed by Emihus. It is stated to be well within the limits of MIL-C-390038 and has what is claimed to be "the lowest ever leakage current." Emihus also have a rectangular plastic-housed unit of precise shape and size with the same levels of current
leakage and dissipation factor. The devices range from 3 V to 35 V and $330 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. Typical leakage currents are of the order of 1 mA per $\mu \mathrm{FV}$. A $3.9-\mu \mathrm{F} \quad 10-\mathrm{V}$ capacitor has a leakage current of 39 nA at $25^{\circ} \mathrm{C}$. Emihus Microcomponents Ltd, Glenrothes, Fife.
WW301 for further details

Integral-cycle Zero Voltage Switch

Electronic Component Supplies Lid have introduced an integral-cycle zero-voltage switch, model CA3059. A 14 -lead dual inline plastic package, it may be operated from an a.c. line direct, provides triac gating signal at zero-voltage crossings, drives a triac gate directly, has fail safe circuit for accidentally opened or shorted sensor, optional output control, and temperature range is from -25 to $+75{ }^{\circ} \mathrm{C}$. Radio interference caused by the unit, which may be used as a differential comparato, is minimal. Electronic Component Supplies (Windsor) Lid, Thames Avenue, Windsor, Berkshire.
WW3 10 for further details

Digital Panel Meter

Bach-Simpson have introduced a new digital panel meter, Model 2800 , suitable for equipment panel mounting. Non-blinking read outs and storage circuitry for securing the number, ensure rapid and clear readings. Five d.c. voltage or current ranges are available at a standard accuracy of

$\pm 0.1 \%$ (f.s.d.). Unit is available with b.c.d. output, relay set points to give high and/or low alarm signals or without its builtin power supply for O.E.M. applications. Apart from the read out tubes, circuitry is all solid state. Bach-Simpson Ltd, 331 Uxbridge Road, Rickmansworth, Herts. WW315 for further details

Desoldering Wick

"Solder Wich" for desoldering joints, is available from Southern Watch and Clock Supplies. It is supplied in reel form and used in direct contact with the joint, heat being applied with a standard soldering iron. No flux is required. The wick draws the solder into itself quickly and without the need for much heat. There are approximately 60 in . of dry wick in each dispenser, and prices range from 18 s to 20 s per reel, according to pad size and width. Southern Watch and Clock Supplies Ltd, Industrial Tools Division, 48-56 High Street, Orpington, Kent, BR6 OJH.
WW312 for furtleer details

World of Amateur Radio

Security restrictions on Service licences?

A curious, and potentially far-reaching "political" restriction-possibly the outcome of the 1967 Britten spy case-is reported to have been imposed on an amateur licence issued to a meteorological officer on Gan, the R.A.F. base in the Maldive Islands in the Indian Ocean. This I understand forbids the station operator from making contacts with stations in the Eastern European bloc, and is believed to be the first time that such a condition has been reported as having been imposed on a British-assigned amateur licence. After the Britten case, an official Security Commission report suggested that a reassessment should be made of security risks attaching to amateur radio activities by members of the Armed Forces and public services. It recalls the cold-war years of the early 'fifties when, for several years, Eastern European amateurs were not allowed to make contact with stations outside their own bloc.

High-stability f.e.t. oscillators

Although the large majority of amateur radio equipment-particularly for h.f. operation-is still based primarily on thermionic valves rather than on semiconductors, there has been a steady progression in recent years towards hybrid designs, in which the advantages of low-cost
small-signal transistors are resulting in their selective adoption. There still exist appreciable problems in all-transistor equipments: the relatively high cost of r.f. transistors of appreciable power rating for the main power amplifier stages of transmitters, and the difficulty of achieving really good dynamic range in the front-ends of receivers. The latter problem appeared to be disappearing with the arrival on the scene of low-cost junction f.e.ts, and single- and dual-gate i.g.f.e.ts but there are increasing doubts as to whether the results achieved in practice with these devices are consistently superior to alternative approaches. On v.h.f., where there has been something of a rush to f.e.t. converters, there is already developing a "backlash" in favour of low-noise valves, such as the miniature Nuvistors. It has been found difficult, with first-generation fe.ts, consistently to achieve in practice both low-noise and good cross-modulation characteristics, though undoubtedly many of the f.e.t. converters are superior to all but-the-best valve units. Careful individua adjustment of biasing potentials is needed to achieve optimum results with f.e.t. units.

However, similar f.e.t. devices are proving extremely successful in oscillator applications, as the heart of variable-frequency oscillator units. For example, a recent f.e.t. Vackar arrangement developed by Peter Martin, G3PDM, covering 5.88 to 6.38 MHz , has a warm-up drift of about 500 Hz in the first 60 seconds, but thereafter remains within $\pm 2 \mathrm{~Hz}$ over 30 -minute

Peter Martin's arrangement of the Vackar oscillator published in "Radio Communication Handbook".

periods; after switching off for 12 hours it returns to within 10 Hz of its previous frequency. To achieve such performance requires considerable care in both electrical and mechanical aspects of the unit, but it is clearly easier to achieve such a standard of performance with an f.e.t. than it would be with the greater heat-change of a thermionic device. This unit is a further example of the popularity of the Czech Vackar oscillator circuit for both bipolar and f.e.t. semiconductors. The two closely related Vackar and Seiler oscillators, both derived from the basic Colpitts oscillator, have proved reliable and straightforward circuits for simple semiconductor oscillators.

V.H.F. meteor scatter

Meteor scatter communications during the November Leonids shower included the first 144 MHz telegraphy contacts between the British Isles and the Faeroes. John Stace, G3CCH, of Scunthorpe, and Peter Blair, G3LTF, of Chelmsford, made brief contacts with the Faeroes station OY2BS. The next major meteor shower is the Lyrids, due April 19th-23rd, but amateur meteorscatter communications are possible at many other times, between stations working on . precisely known frequencies: the frequency band used for this type of operation is 144.09 to 144.10 MHz . John Stace, G3CCH, 38 Skippingdale Road, Scunthorpe, Lincolnshire, has compiled a list of amateurs interested in meteor-scatter operation, and is also anxious to hear from amateurs outside the U.K. wishing to set up schedules with British amateurs.

In Brief: First sections of the A.R.R.L. annual DX contest will be held on February 7th-8th (phone) and February 21 st -22nd (c.w.). ... At the recent A.G.M. of the Radio Society of Great Britain, the Society's "Calcutta Key"-an award made for outstanding service to the cause of international friendship through the medium of amateur radio-was presented to René Vanmuysen, ON4VY, the Belgian amateur responsible for the organization of the 1969 I.A.R.U. Brussels Conference and for the start of reciprocal licensing in Europe which today allows amateurs freely to obtain temporary licences in many countries. . Marie de Forest, widow of the inventor Lee de Forest, now operates as WB6ZJR ... Yugoslav amateurs established emergency communication links following the earthquake in the Banja Luka area of Bosnia. . . . Because of a new channel requirement for television, 50 MHz facilities for Rhodesian amateurs were withdrawn at the end of 1969.... An informal international amateur meeting is being planned by E.D.R., the Danish amateur radio society, during Whitsun (May 16th-18th) near Nyborg on the island of Funen. Projects include "fox hunting" (d.f. tests) and a v.h.f. balloon translator. Details from Joergen DamJohansen, OZ9DA, Hammershusvej 43, DK-8210 Aarhus V, Denmark.

Pat Hawker, G3VA

Test Your Knowledge

Series devised by L. Ibbotson*, B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

21. Amplitude Modulation

Questions 1 to 9 all refer to a $1-\mathrm{MHz}$ sinusoidal carrier voltage of peak value 2 V which is amplitude modulated in turn by three signals, each of frequency 1 kHz , and each of mean value zero (no d.c. component) and peak value 1 V . The three signals have sinusoidal, square and sawtooth waveforms respectively.

1. The depth of modulation is:
(a) the same for all three modulating signals
(b) greatest for the sinusoidal modulating signal
(c) greatest for the square-wave modulating signal
(d) greatest for the sawtooth modulating signal.
2. For the case of the sinusoidal modulating signal the depth of modulation is:
(a) 0.2
(b) 2
(c) 0.5
(d) 5.
3. Assuming that all side frequencies are included, the power in the sidebands (when the modulated carrier is applied to a load) is:
(a) the same for all three modulating signals
(b) greatest for the sinusoidal modulating signal
(c) greatest for the square-wave modulating signal
(d) greatest for the sawtooth modulating signal.
4. The ratio of the total power in the sidebands of the square-wave modulated carrier to the power of the unmodulated carrier (feeding the same load) is:
(a) unity
(b) $1 / 2$
(c) $1 / 4$
(d) $1 / 8$.
5. The spectrum of the modulated carrier contains only a single pair of side frequencies:
(a) for all three of the modulating signals
(b) for none of the modulating signals
(c) for two of the three modulating signals
(d) for one of the three modulating signals.
6. The amplitude of the carrier-frequency component of the spectrum of the modulated carrier is the same as the amplitude of the unmodulated carrier:
(a) for all three of the modulating signals
(b) for none of the modulating signals
(c) for two of the three modulating signals
(d) for one of the three modulating signals.
7. The frequencies of the three modulating signals are each doubled. This results in each case in a doubling of:
(a) the depth of modulation
(b) the amplitudes of the side frequencies
(c) the amplitude of the carrier-frequency component of the spectrum
(d) the frequency separation of the components of the spectrum.
8. The amplitude of each modulating signal is increased until "over modulation" occurs. Assuming perfect modulating equipment:
(a) the amplitudes of all three signals will be the same
(b) the sinusoid signal will have the lowest amplitude
(c) the square-wave signal will have the lowest amplitude
(d) the sawtooth signal will have the lowest amplitude.
9. In the spectrum of the sinusoidally modulated carrier the component of frequency 1.001 MHz has amplitude:
(a) 2 volts
(b) 1 volt
(c) 0.5 volt
(d) 0.25 volt.
10. A sinusoidal carrier voltage is amplitude modulated by a complex audio signal, which, over a short period of time, has a constant amplitude. If the depth of modulation measured during this time is m, the ratio of total sideband power/carrier power supplied to a load during this time will be approximately:
(a) m; (b) $m / 2$; (c) m^{2}; (d) $m^{2} / 2$.
11. A monochrome television videomodulated carrier differs from a soundradio audio-(amplitude) modulated carrier in that:
(a) the depth of modulation is always 100%
(b) the mean carrier amplitude is not constant
(c) frequency modulation is present as well as amplitude modulation
(d) the spectrum only has one sideband.
12. The power required to be transmitted in a communication system using amplitude modulation can be greatly reduced, without reducing the information transmitted, by suppressing the carrier-frequency component at the transmitter and reinserting it at the receiver. If both sidebands are transmitted gross distortion will occur in the output unless the carrier is replaced with exactly the correct:
(a) amplitude
(b) phase
(c) frequency
(d) waveform.
13. A carrier is amplitude modulated by an audio signal. If one sideband only is transmitted the original modulating signal can be recovered by detection after adding to the sideband, at the receiver, a carrierfrequency signal. If the detected output is to have an acceptably low amount of distortion, the carrier-frequency signal added must:
(a) have exactly the same frequency as the carrier at the transmitter
(b) have exactly the same phase af the carrier at the transmitter
(c) have exactly twice the amplitude of the sideband
(d) have an amplitude at least 10 dB above the amplitude of the sideband.
14. A signal voltage and a carrier voltage, of appropriate frequencies and amplitudes, are added in series and applied to a circuit in order to produce amplitude modulation of the carrier by the signal. To produce the required effect the circuit must include:
(a) a source of e.m.f (other than the two signals)
(b) a non-linear amplifying device
(c) a passive non-linear component
(d) any non-linear component.

15.

The diagram shows an envelope detector for amplitude-modulated signals. For correct and efficient operation the values of C and R must be selected with care. One requirement is that the output must follow the modulation at all times; to meet this requirement the product of C and R must:
(a) be very much greater than the period of the highest modulating-frequency component
(b) be very much less than the period of the highest modulating-frequency component
(c) be very much greater than the carrier period
(d) be very much less than the carrier period.

February Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

2nd. I.E.E.-Discussion on "Electronic measurement related to fundamental standards" at 17.30 at Savoy PI., W.C.2.

3rd. I.E.E.-"Dispersive acoustic devices" by Dr. D. P. Morgan and W. S. Mortey at 17.30 at Savoy PI., W.C.2

4th. I.E.R.E.-"Passive satellite communications" by R. L. Harris at 18.00 at 9 Bedford Sq., W.C.I.

6th. I.E.E.-"Some aspects of direct television reception from satellites" at 17.30 at Savoy P1., W.C.2.

10h. Radar \& Electronics Assoc.-"Microwave semi-conductors" by M. B. Fletcher at 19.00 at B.I.C.C. Lid., 21 Bloomsbury St., W.C.I.

12th, R.T.S.-"Dial a programme-communication television" by E. J. Gargini at 19.00 at the I.T.A. 70 Brompton Rd., S.W. 3 .

18th. I.E.E.-"Recent advances in radar anti-clutter techniques" by Dr. W. S. Whitlock at 17.30 at Savoy Pl., W.C. 2 .

19th. I.E.E-Faraday lecture "People, communications and engineering" by J. H. H. Merriman at 18.00 (public) at the Central Hall, Westminster.

20h. I.E.E.-"Field store television standards conversion" by S. M Edwardson, R. E. Davies and R. V. Harvey at 17.30 at Savoy PI., W.C.2.

20h. I.E.E-Faraday lecture "People, communications and engineering" by J. H. H. Merriman at 18.00 (students) at the Central Hall, Westminster

23rd. I.E.E. - "Terminal units and transmission in electronic telephone exchanges" by T. H. Nowers at 17.30 at Savoy PL., W.C.2.

25th. I.E.R.E- "Low light television tubes" by Dr. P. H. Batey at 18.00 at 9 Bedford Sq., W.C.I.
26th. R.T.S.-"A colour camera and one-inch VTR for C.C.T.V." by Dr. G. L. Sanchez at 19.00 at the I.T.A. 70 Brompton Rd, S.W. 3.

BIRMINGHAM

2nd I.E.E.-Sir Oliver Lodge lecture on "Man, electronics and aerospace" by R. F. Young at 19.00 at the Town Hall.

25th. Brit. Acoust. Soc.-"Micro-electronics and its influence on underwater acoustic systems" at 10.00 at the Dept. of Electronic Engineering. the University.

BRIGHTON

17th. I.E.R.E.-"Discriminators for broadcast f.m. transmission" by Hugh Mayo at !8.30 at the College of Technology.

BRISTOL

18th. I.E.R.E./I.E.E-"Use of computers in designing automatic process controllers" by D. J. Norton at 18.00 at the University.

CARDIFF

11th. I.E.R.E.-"Navigational aids" by C. Powell at 18.30 at the University of Wales Inst. of Science \& Technology:

17th. I.E.E-Faraday lecture "People, communications and engineering" by J. H. H. Merriman at 14.30 (students) and 18.30 (public) at Sophia Gardens.

Chatham

19th. I.E.R.E.-"Display tubes for colour television" by B. Eastwood at 19.30 at the Medway College of Technology.

CHELMSFORD

25th. I.E.E.-"Hi-fi" by J. Moir at 18.30 at the King Edward VI Grammar School.

COLCHESTER

10h. I.E.R.E.-"Dynamic information displays" by D. W. G. Byatt at 18.30 at the University of Essex.

DORKING

25th. J.E.E.-"Stereophonic transmission" by Dr. G. J. Phillips at 19.30 at the Star and Garter Hotel.

EDINBURGH

10h. I.E.E./I.E.R.E.-"Colour television receiver design and maintenance" by G. D. Barnes at 18.00 at the Carlton Hotel. Northbridge.

GLASGOW

9th. I.E.E./I.E.R.E.-"Colour television receiver design and maintenance" by G. D. Barnes at 18.00 at the University of Strathclyde.

GUILDFORD

4th. I.E.R.E.-"Optical communications through glass fibres" by Prof. W. A. Gambling at 19.00 at the Technical College.

LOUGHBOROUGH

10th. I.E.R.E/I.E.E.-"Generation. propagation and application of microwave acoustics" by Prof. K. W. R. Stevens at 18.30 at the University of Technology, Edward Herbert Building.

NEWCASTLE-UPON-TYNE

11th. I.E.R.E.-"Aerials" by Dr. A. R. Ritson at 18.00 at the Dept. of Physics and Physical Electronics, the Polytechnic, Ellison Place.

NEWPORT, I.o.W.

13th I.E.R.E.-"Integrated circuits into second decade" by A. Barnes at 19.00 at the Technical College.

PORTSMOUTH

18th. S.E.R.T.-"Use of transistors in colour TV receivers" by A. E. Baker at 19.00 at Highbury Technical College, Dovercour Rd, Cosham.

RUGELEY

Sth. I.E.R.E./I.E.E. /.I.P.O.E.E.-"Pick-up design" by S. Kelly at 19.00 at the Shrewsbury Arms Hotel. Market St.

SHEFFIELD

10th. I.E.E.-Faraday lecture "People, communications and engineering" by J. H. H. Merriman at 10.30 and 14.30 (students) and 19.00 (public) at the City Hall.

STEVENAGE

1lth. S.E.R.T.-"Basic design and construction techniques in guided weapon electronics" by C. H. Smith at 19.30 at the Coliege of Further Education, Monkswood Way.

H.F. Predictions-February

- Median standard MUF
--ー- Optimum traffic frequency
-. - - Lowest useable HF

Daytime MUFs continue to peak around 30 MHz . Duration and position in time of these peaks depends on longitudes of terminals relative to G.M.T., highest MUFs occurring when ionospheric reflection points are above the sun's horizon. On the South African route conditions between 20 and 30 MHz should be excellent and the fading which begins about two hours after sunset should be sligh. Conditions for South America will be similar.

Far East routes will probably be unworkable from midnight till 06.00 G.M.T. due to the almost continuous change of MUF.

When auroral zone absorption is not evident North American LUFs will be about 3 MHz at 05.00 and 8 MHz at $15.00 \mathrm{G} . \mathrm{M} . T$. All LUFs are calculated for reception in the U.K. of automatic telegraphy. Broadcast LUFs will be similar but several MHz higher for amateur transmissions.

Answers to "Test Your Knowledge"

Questions on page 93

1. (a) The depth of modulation is, by definition, the ratio of the peak value of the modulating signal to the peak value of the carrier.
2. (c) It is, of course, also this for the others.
3. (c) For any modulating signal which has a mean value of zero the ratio (sideband power/carrier power) is half the ratio (mean-square modulation voltage mean-square carrier voitage). The square wave has the largest mean-square voltage.
4. (c) This follows from the formula given in ans. 3
5. (d) For each sinusoidal component of the modulating signal the modulated-carrier spectrum contains a pair of side frequencies.
6. (a) This is true for any modulating signal which has zero mean value.
7. (d) Doubling the frequency of a square or sawtooth wave doubles the frequency separation of its sinusoidal components.
8. (a) Over modulation occurs in all cases when the depth of modulation exceeds 100%.
9. (c) This is the upper side-frequency. The modulated carrier may be represented as $\left(V_{c}+V_{m} \sin \right.$ $\omega_{m}\left(\right.$) $\sin \omega_{c} t$ and expansion of this expression shows that the upper side frequency has amplitude $V_{m} / 2$.
10. (d) In effect we are assuming here that the ratio mean-square modulating voltage/mean-square carrier voltage is equal to the ratio peak modulating voltage/peak carrier voltage which is only true if the modulation is sinusoidal. However, with a sound signal the error is not generally very great.
11. (b) One carrier level represents peak white in the video signal, another represents the black level; all shades of grey in the picture give carrier levels between these two extremes. Hence the mean carrier level depends on the mean brightness.
12. (c) A change in the amplitude of the carrier will alter the depth of modulation, but this will not cause distortion so long as the carrier is not too small. A change in the carrier phase causes the depth of modulation to be reduced-a $\pi / 2$ shift reduces it to zero-and introduces angle modulation (it also causes some second-harmonic distortion). This is not serious for a few degrees of phase shift, but if the carrier frequency is not exactly right the carrier phase relative to the sidebands will drift continuously causing large cyclic variations of modulation depth
13. (d) The disadvantage discussed in ans. 12 does not apply if only one sideband is present, but the reintroduced carrier must be large, otherwise significant harmonic distortion occurs.
14. (d) Any non-linear component will cause "mixing" resulting in frequency components which can be filtered out to form an amplitude-modulated wave.
15. (b) Analysis shows that if the output is to follow the modulation while it is falling the product of C and R must be less than $\frac{T_{m} \sqrt{ } 1-m^{2}}{2 n m}$ where $T m$ is the period of the highest modulating frequency component. It is apparent from this that if envelope detection is to be used the depth of modulation can not be allowed to reach 100%.

THE CHOICE

(2)
OF CRITICS

BOLEM PREEISTON COMPONENTS

ARE BACKED BY THE GOODWILL AND SERVICE OF OUR ENTHUSIASTIC \& LOYAL STAFF

TAKE SIGNAL LAMPS

There are over 4,000 types of Bulgin Signal Lamps from which to select. and a wealth of Bulgin 'know-how' is available to assist in the choice of a particular model to suit your combination of lamp-types. voltage, wattage. size, environmental conditions and design. Drawings are available on request and your orders will recsive our prompt attention. A small selection from our vast range is illustrated and described below:-

D.674/1 Miniature L.E.S. Iamp model, insulated body. domed lens. D. 736 Flat ended lens version of D,805 D. 22 Miniature rectangular model, L.E.S. lamps. insulated body. D. 952 Inexpensive model, M.E.S. or M.B.C. Iamps in clip-in holder. D. 862 Highly insulated M.E.S. or M.B.C. lampholder. fluted lens. D. 621 Moulded body with no lens, M.E.S. or M.B.C. lamps show. D. 700 Similar O above but with domed tens. D. 800 Meral body, clip-in M E S or M B C lamp-holder D. 109/M General purpose ME.S. or M.B.C lampholder with metal berel D 815 Neon or 0.816 LES model push fixing D 715 N Recrangular neon or 8.816 th resistor, for either 110 V . or 250 V . use. D. 296 Sub-miniature neon lamp, push-on spring washer fixing, resistor needed. D.914/V Push fixing in square hole neon lamp, with resistor for 110 V . or 250 V . use. $\mathbf{D} .296 \mathrm{~V}$ Neon model with resistor, push-in fixing, push-on tabs for cable connections. D.666/G/BLH. Heavy duty S.B.C. Iamped model. glass lens and special lamp-holder. D.671/1 Special M.E.S. model with dhree colour filters able to show behind neutral front lens. D.810/G large open model. B.C. Iampholder: glass lens.

FOR DETAILS OF THE COMPLETE RANGE SEND FOR BROCHURES REF. 1502/C

A. F. BULGIN \& CO. LTD.
 Bye Pass Rd, Barking, Essex
 Tel: O1-594 5588 (12 lines)

Literature Received

ACTIVE DEVICES

A design for a practical $\times 8$ single-stage step recovery diode frequency multiplier with a typical maximum output power of 75 mW at 16 GHz is given in a new 16-page application note (No. 928) from Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks. \qquad WW401

Small selenium rectifiers is the subject of a leaflet available from Cole Electronics Ltd, 7-15 Lansdowne Road, Croydon CR9 2HBWW 402

A new series of thyristors (type CR31) is described in a leaflet from A.E.I. Semiconductors Ltd, Carholme Road, Lincoln, which also includes information on fuse selection and circuit design

WW403
A new price list for 74 N t.t.l. is available from Athena Semiconductor Marketing Co. Ltd, 140 High Street, Egham, SurreyWW404

The M-O Valve Company Ltd, Brook Green Works. Hammersmith, London W.6, have available four valve data sheets intended for inclusion in their loose leaf binder. The components described are types ACT00 CAT200 and RL16 and the RL2 series \qquad WW405

PASSIVE COMPONENTS

A leaflet we have received from Jack Davis (Relays) Ltd, 9-10 Mallow Street, London E.C.I, gives details of the range of Post Office 3000 and 600 relays available from them

WW406
F. C. Lane Electronics Ltd, Albion Road, Horsham, Sussex, recently established as suppliers of connectors, have sent leaflets and price lists of the various makes handled (Smart \& Brown, Ether, Transradio, Rendar and Plessey)

WW407
A set of amended price lists is available for the Erie catalogue. They may be obtained from Erie Electronics Lid, South Denes, Great Yarmouth. Norfolk

WW408
The Electronic Components Bultetin from Siemens of Berlin numbered $5-69$ is available from Cole Electronics Lid, 7-15 Lansdowne Road, Croydon CR9 2HB
.WW409
We have received the following short-form catalogues from Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex:
Three-phase Miniature Precision MotorsWW4 410
Miniature Precision d.c. MotorsWW 111

A wide range of electrical components is listed in the new catalogue called "Swift Service" from the D.T.V. Group Lid, 126 Hamiton Road, West Norwood, London S.E. 27

WW4 12
Catalogue No. P869E from Superior Electric Nederland N.V.. of The Hague, Netherlands, describing a range of variable transtormers, is available in the U.K. from Superior Electric, Aylmer House, Linkway, The High, Harlow, Essex

WW413
A range of moulded trigger transformers intended for use in s.c.r. triggering applications is described in a leaflet from Sprague Electric (U.K.) Ltd. Sprague House, 159 High Street, Yiewsley, West Drayton, Middlesex

WW414
Fans, relays, stepping motors, coaxial connectors, meters, resistors, potentiometers, switches, rectifiers and capacitors are some of the components covered in the stock catalogue Summer 1969 of Distronic Lid, 23-3। King Sireet. Acton, London W. 3

WW415

HARDWARE

A new series of eight data sheets is now available from A. \& M. Fell (Manufacturing) Ltd, Denton Road. Newhaven, Sussex, outlining the characteristics of their latest range of tungsten carbide precision tools, including wire bonding capillaries, ultrasonic bonding wedges, unplugging punches and contact probe needles

WW4 16
Instrument cases, card-frames and racks and cabinets in the Elmaset system are described in a calalogue from Radiatron Ltd, 76 Crown Road. Twickenham, Middlesex

WW417

The range of i.c. accessories, including d.i.l. sockets, flat-pack holders. card connectors and i.c. patch cords is described in a short-form catalogue (9|A) from Cambion Electronic Products Ltd, Cambion Works, Castleton, Nr. Sheffield

WW418
Imhofs CDX and JX systems of equipment packaging are described in a 22 -page catalogue available from Alfred Imhof Lid, Ashley Works, Cowley Mill Road, Uxbridge, Middlesex

WW4 19
The techniques of assembling plastic or plastic and metal parts using ultrasonic equipment are described in a brochure from Dawe Instruments Lid. Concord Road, Western Avenue, London W. 3 WW 420

Properties and suggested applications for more than seventy grades of Testolite (industrial laminates) are described in a revised 20 page booklet available from the International General Llectric Compans of New York Lid, Lincoln House, 296-302 High Holborn, London w.C. 1

WW421

EQUIPMENT

Aim Electronics Ltd, The River Mill. St. Ives, Huntingdon, have sent us the following literature.

Catalogue of Test Equipment	W422
Guide to Modules and Systems	WW423
"Programming Modules"	WW424

An automatic l.f. spectrum analyser is described in a leaflet from Fenlow Electronics Ltd, Jessamy Road, Weybridge, Surrey

WW425
Two airborne h.f./s.s.b. transceivers are discussed in literature received from Avco Electronics Division, 2630 Glendale-Milford Road, Cincinnati, Ohio 45241, U.S.A.

WW426
Literature labelled Dynaform 7000 describes electronic tachometers and is available from the Dynalco Corporation, 4107 N.E. 6th Avenue, Fort Lauderdale, Florida 33308, U.S.A.

WW427

A high-stability (2 " $\mathrm{V} /{ }^{\circ} \mathrm{C}$ maximum drift) battery-powered operational amplifier that draws only $(1 \mu \mathrm{~W}$ of quiescent power is described in a leaflet available from Analog Devices, Inc, 221 Fifth Street. Cambridge, Mass. 02142, U.S.A.

WW428

GENERAL INFORMATION

We hear from Mullard that stocks of their 1969 Pocket Data Book are now exhausted and that they regret no further orders can be accepted.

Metron, the Pergamon reviews and abstracts journal, has produced a supplement on photon detectors which surveys literature on detectors for the ultra-violet visible and infra-red wavelengths $(0.01$ to $1000 \mu \mathrm{~m})$. The price of the supplement is $£ 4$ from the Pergamon Press Lid, Headingtion Hill Hall, Oxford.

Papers read at the Electronics Symposium, which was held by Ferranti at the Royal Garden Hotel, London, in November, are now available from Ferranti Lid, Gem Mill, Chadderton, Oldham, Lancs WW429

Those who require an introduction to logic circuits cannot go far wrong with the book that has just been published by Marconi Instruments Ltd, St. Albans, Herts. The book follows the programmed method of instruction and costs $£ 2$.

Readers interested in receiving overseas radio transmissions may like to see a specimen copy of "International Short Wave Radio" the duplicated bulletin published by the International Short Wave Club, 100 Adams Gardens Estate, London S.E. 16.

The Gauge and Tool Makers' Association has published the tenth edition of its Members' Handbook and Buyers' Guide Index. This may be obtained from The Gauge and Tool Makers' Association, Standbrook House, 2-5 Old Bond Street, London WIX 4LS

WW430
A leaflet is available from Mullard Ltd, Mullard House, Torrington Place. London W.C.1, which lists all the publications available from their Educational Service.

Hoover Lid, Perivale, Greenford, Middlesex, have published a booklet called "Decimal Money for the Office Worker" WW431

Two new parts of BS 3499 "School music equipment" are now available: Part 9C Electronic organs with pedal boards (8s) and Part 8B Magnetic tape recording and reproducing equipment (6 s). The British Standards Institution, Sales Branch, 101/113 Pentonville Road. London N.I.

SINCLAIR IC-10

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier. it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

$110 \mathrm{~dB}(100.000,000.000$ times) total.
8 to 18 volts.
$1 \times 0.4 \times 0.2$ inches. Size:
Sensitivity:
Input impedance:
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators. etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all bis requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good. in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or $\mathrm{PZ}-6$. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.
Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet and templates provided enable you to position them. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

z-30 TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER

The z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors: Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is, unique in that it will operate perfectly, without adjustment, from any power supply from 8 to $\mathbf{3 5}$ volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 mago

SPECIFICATIONS

Power output- 15 watts R.M.S. (30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. (40 watts peak) into 3 ohms using a 30 vott sumply.

Output-Class AB.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio: better than 70 dB unweighted.
Distortion: $\quad 0.02 \%$ total harmonic distortion at full output into 8 ohms and at alt lower output levels.
Size: $\quad 3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2}$ inches.
Input sensitivity: $\quad 250 \mathrm{mV}$ into 100 Kohms.
Damping Factor: >500.
Loudspeaker impedances 3 to 15 ohms.
Power requirements: 8 to 35 V.d.c.

APPLICATIONS

High fidelity amplifier; car radio amplifier; record player fed direct from pick-up: intercom: electronic music and instruments: P.A. laboratory work. etc. Full details of these and many other applications are given in the manual supplied with your Z.30.

2.30

Roady built, tested and guaranteed, with 2.30 manual.

89/6

STEREO SIXTY
 PREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV : Magnetic Pickup 3 mV Correct within \pm 1 dB on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxiliary-up to 3 mV . - Outpur- 250 Mv
- Signal-to-noise ratio better than 70 dB .
- Channel matching-within 1 dB .
- Tone Controls-TREBLE + 15 to - 15dB. at 10 KHz : BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA
- Power requirement-PZ. 5 or PZ. 6
- Finish-brushed aluminium front panel with black knobs.
- Mounting on cabinet front by spindle bushes and adjustable brackets.

STEREO SIXTY

SINCLAIR POWER SUPPLY UNITS

PZ-5 cient volts unstabilised-suffi drive two $\mathbf{Z - 3 0 ' s}$ and a Stereo 60 for the majority of domestic applications. Price: $\mathrm{f4} .19 \mathrm{~s}$. 6d.
PZ-6 35 volts stabilised ideal for driving two $\mathbf{Z - 3 0}$'s and a Stereo 60 when very low efficiency speakers are employed.

Price: $£ 7.19 \mathrm{~s} .6 \mathrm{~d}$.

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will modules from us, you are dissatisfied with them, we will
refund your money at once. Each module is guaranteed to refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we
will service it at once and without any cost to you whatsowill service it at once and without any cost to you whatso-
ever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter.

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"
Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 tueble unit-as used in B.B.C. Monitor Loudspeakers - and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms.
Dimensions: 21 in. $\times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{4}$ in.
Choice of finish: Teak or walnut.

1. Studio quality high frequency unit (HF1300 Mk. 2).
As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) —plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3^{\prime \prime}}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network

It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems.

Loudspeakers for

 the PerfectionistROLA CELESTION LIMITED. Ferry Works, Thames Ditton, Surrey. 01-398 3402.
WW-086 FOR FURTHER DETAILS

BRITISH

ELECTRONIC COMPONENTS, ACCESSORIES and MATERIALS

1970 Product Guide and
Directory of Manufacturers

Published by the
Radio and Electronic Component Manufacturers Federation 4 Winsley Street, LONDON, WIN ODT.
from whom copies can be obtained by bona fide applicants:
Overseas-Free of charge
United Kingdom-6/- including postage and packing

THANSFORMERS

designed to customer's Own Specifications for ALL APPLICATIONS UP TO 100 KVA. "C"' CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

This month we are adding two new types of Transformers to our existing standard ranges.

1. THE 1200 SERIES

This series covers 150 VA Transformers and gives a volcage range up to
110 volts at various loads. 110 volts at various loads.
2. THE DB SERIES

These Transformers have a high VA density (approximately 2.5 VA per cu. inch) and cover a VA range up to 40 VA .
Please write for further details.
Samples from our stondard production ranges
*Low Voltage
30-0-30V. 4A. 12 6
28 V . IA., 28 V . IA., 28 V . IA., 28 V . IA., $30 \mathrm{~V} .250 \mathrm{~mA} . \quad . \quad . \quad . \quad 4150$ *Primaries $10-0-200-220-240 \mathrm{~V}$.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver 46 Mains 19.6 L.P. Filter, Chassis Mounting 126 L.P. Filter, Printed Circuit Mounting 156

70V \& 100V Line Matching

Fitted with terminal panel, taps at $0.5,2,4$ and 8 W . into 15 ohms
9/- each in 100 Lots
Flying leads, taps at $\frac{1}{8}, \frac{1}{2}, 1,2$ and 4 W . into 3 ohms .. T/3 each in 100 Lots

Prices inclusive of postage and packing, each.
for small quantities, cash with order, please.
HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER, M14 4GT 061-226 3411

Ballistics
Computers by Westinghouse. Nine servo amplifiers with associated motors and Power Packs. Brand new in sealed containers. Price on application.

Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal basis for amateur computer. Application leaflet. £12.10s. post free.
punches, readers, verifiers and teleprinters. new computer enginering surplus materials, at realistic prices. mobile showroom. calls on request to suitable locations.
Ellioft 8038 computers 4 k store, 803 C 8 K store, film handlers, two tape readers, two tape punches. ICL 1901 Central Processers 8K store LIneprinter, 600 LPM. Ellioft 903 8 K store tape readers \& punch. Prices on application.

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information irom:
HARRIS ELECTRONICS
(London)
138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

YOU WANT PARTS URGENTLY -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business

We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham.
Sandiacre 8072 STD ONO 2398072

GARRARD RECORD DECKS

All the larest models BRAND NEW and guaranteed - 2025 STEAEO

- 2025 STC DOAMOND 9TAH.
- - 3 P 25 ME 11

SL 65
AP 75
401
SL 75
SL 95 GOLDAING
GL 75 P . Carriayeflnsurance $7 / 6$ axura on any mote - B.S. Coners $\mathbf{E 3} 10.0$ 'Specisy offer base and cover a/
models ar $\mathrm{f4} 4.15 .0$. Cartiage $5 /$
Complere range of Cartridges/Plinthi/Covers.

MULLARD 1 WATT AMPLIFIER 8woy Alarms. Tele phone.
Aecord Players or Guinar Pesctice
9 Volt 5 transistors with wolume control Output 3 ohmi
Ideer tor use with STAAR RECORD OECK PRICE 45/-. p.p. $2 / 6$. OTHER ITEMS. Suituble 7×4 inch.
 P.P. 99 vort baltery $3 / 9$. Write for leaflet No. 2 .

BUILD

 YOURSELF A QUALITY RADIO

New printed circuit design with full power output. Fully tuneable on both mwiww bands. 7 Mullard transistors, Finted 5"
speaker, Room Filling Power. Easy to speaker, Room Filling Power. Easy to
build with territic results. All local end buind with terific results. Alt local end
continentat stations. Complete detaited continental stations. Complete detaised instructions
TOTAL COST E6.19.6. p.p. 4/6.

TRANSISTORS DIOOES RECTIFIERS WE HAVE THE MOST COMPREHENSIVE STOCK IN GREAT BRITAIN. NEW 1969 LIST OF 1000 TYPES SEND FOR FAEE COOY TODAY (LIST 36) Whether you requlre one or 1000 ,
Can fulfill your order from stock!?
For quantity quotations telephone:

HENELEC 5-5 STEREO AMPLIFIER

SINCLAIR EOUIPMENT The SINCLAIR ic- 10 is the worlds first monolithic intergated circuit high fidelity power amplifier and pre-amplifier. The circuit itself has an out put power of 10 watts, yet with an overall

size of $1 \times 0.4 \times 0.2 \mathrm{in}$.

BUILD THIS VHF FM TUNER

5 MULLARD TRANSISTORS, $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH,
PRINTED CIRCUIT. HIGH FIDELITY REPROOUCTION

parts total cost fe.19.6. oecoder e5.19.6.

ENELANDJS LEADINE
 Homentanies

henry's RADIO Fully illustrated CATALOGUES

all types A OF ELECTRONIC COMPONENTS TEST
EQUIPMENT KITS BUILT UNITS

B
HIGH FIDELITY \& GENERAL AUDIO EQUIPMENT catalogue

atalogues
 COMPREHENSIVE

 A Over 300 pages fully detailed and illustrated with more than 6,000 stock items. Everything for amateur and professional use. Complete with 5 vouchers 10 / value, Ior use with ming for
purchases. \qquad
B New audio and high fidelity catalogue. 120 pages containing ideas and equipment for every application. Special low prices for all leading makes. Plus $12 / 6$ extra discount voucher.
order as catalogue b.

AUDIO EQUIPMENT

Mono or Stereo Audio equipment developed from Dinsdale M. 11 - each unit or system will compare favourably with other protes-
sionat equipment selling at much higher prices.
£11.12.6. to £38.17.6. Lall units available separately).
THE FINEST VALUE IN LOW COST HIGH FIDELITY-CHOOSE A SYSTEM TO SUIT POUNDS.

HIFFI equipment to suit EVIXRYPOCKIT

VISIT OUR NEW HI-FI CENTRE AT 309 EOGWARE RDAO, for at leading Makers of -
AMPLIFIERS TUNEAS, OECKS SPEAKERS, MICROPHONES, TEST EOUIPMENT, ALL WITH AMPLIFIERS. TUNERS, DECKS, SPEAKERS, MICROPMONES, TEST EOUIPMENT. ALL WITH
DISCOUNTS - IT WILL PAY YOU TO PAY US A VISIT. AUDIO SYSTEMS C40- F300 TO SUIT EVERY POCKET, OEFERAED TEEMMS AVAILABLE. TWO OEMONSTRATION ROOMS
SEND FOR ILLUSTRATED BROCHUAE 16/17.

ELECTRONIC ORGANS

Start building for as little as $£ 10$

STARFEATURES

STAR FEATURES: PRINTED CIACUIT DESIGNS. MODELS FROM E99-G350

- ALL TRANSISTOR PRINTED CIACUIT DESIGNS.
 LAST ITEM. FULL AF TER SALES SERVICE
'CREDIT SALE \& H.P. TERMS AVAILABLE.
We are pleased to offer the cholee of FOUR
Cg9 THE MAYFAIR tof lint or ctental mucic?
to two mmual five octave deluxe model with
OAK CONSOLE trom f 285 for the serious muscien.
These kits are the result of years of researct and
design and offer the best thet is essentiat to pood
organ designs. coupled with excelient velue are
within the reach of most pockets. No technical still
or knowiedge is required in construction, with the
aid of the STEP BY STEP illustreted manues will
produce an instrument that will be delight to own
and use and will give years of trouble tree enter.
tainment lor the whole tamily.
SEND FOR ILLUSTRATED BROCHURES $9 / 10 / 1$
TODAYI When in LONDON CALL IN-SEE. MEAR PLAY FOR YOURSELF.
Organ Demonstration Room ist Floor. Gn
We are able to supply alt items for this series. der zais on recruest. Bult models aw aitable from $\mathbf{f 1 2 4}$.

HR
 QUALITY COMPONENTS AND EQUIPMENT

NEW RANGES FOR THE AMATEUR AND PROFESSIONAL USER
 $100 \mathrm{M} \Omega$. Meter move AFIOS
levars
and
and

Model 200H

* 50,000 OH
MULTIMETER ovement
Complete
* Deluxe sine-square wave rc audio generator

 4.1tation. R6.12.6 (2-station wses no
wires wiress
Telephone amplifier.
maper
* SIGNAL INJECTOR

Now model for parman

 checking all audioand RF up to VHF. Simple to use. Battery operated. Output approx. SKe/s, 1.4 PPP . Harmonics up to VHF.
SE2SOB $35 /-$ p.p. $1 / 6$

* matching signal tracer

SE 500

* quality panel meters

PEAUDIO GENERATOR
 $30 \mathrm{k} / \mathrm{s}, 7 \mathrm{~F}$ p.e. Dintartion under
2%. Output impedance ikS.
 TE22 Price E/6.10.0.

*VACUUM TUBE VOLTMETER

 Feasuras low price for such an inseru-ment. Larso bin full view scaled meter
 28 ranges. D.C. voles: $0 / 1 / / 5 / 15 / 50 / 150 /$
$500 / 1500$. A.C.
volts: ollisi de scales: -10 descales:
co +65de. Com
plete with in
itructions on teructions end
leads. MODEL TE65 \& 17.10 .0 p.p. $7 / 6$ HV Probe 50/-

* transistor power amplifiers

 25 wete $\mathrm{G}-16 \mathrm{ohm} 18 \mathrm{Bomv}$ inpur $50 / 160$ vole

\qquad

* FIELD STRENGTH METER meter. Earphone output. Calibrated
* 20,000 OHMS PER VOLT MULTIMETER Popular model bus with exters zesple
ranec 20.000 ohms per volt. $0 / 5 / 25 / 50 /$

FL3 Also met Also meter

$\star \operatorname{Tin}$

TRANSISTORISED
TERSISTORISED
TERCOMMS

Mn. Alsods

Suppliers of quality
components and equipment for over 25 years

AUDIO
HIGH FIDELITY Complete range in stock to suit al
HI-FI and Public Ad dress requirements
COMPONENTS UK's largest supplier of components. EVERYTHING YOU NEED
see catalogue ON FACING PAGE

*TRANSISTOR CHECKER
Complere capacity for chackistors ning and pno for alpha, beta
and G German. Also diodes with leads and zam-2, Price ©5.19.6, p

EXPERIMENTER'S MODULE Terrific offer of brand
new STC time delay eleetronic time delay Adiustible $3-15$ res. Suphlied $\begin{gathered}\text { operated. } \\ \text { complete }\end{gathered}$ with sugsested cietes circuirs s. 5 CK Module
price $35 /-$. $9 \& 12 \mathrm{~V} 100 \mathrm{~mA}$ STABILISED SUPPLY
 9V 45/- pp.2/6 12V $47 / 6 \mathrm{pp} .2 / 6$

Transistors

 Hugn quantities instock for Indus Write for IndusWrial Price Llist Includes all Type Includes allityoesof Samicon ductor Device.

PORTABLE GEIGER COUNTERS

FOR RADIO ACTIVITY.
haverrack cabls And Drobe hisf
plice flo OUR PRICE, NEW,
TESTEO COMPLETE

DOSIMETER POCKET.TYPE 0-50r 12/6

	(2) 0	NOMBREX transistorised Test Equipment		
MOO				
	RF. Gen	21.		35
	Xiat Rf ${ }^{\text {a }}$	2910	-	
30	Au	1910		
	C. F. Ganersior	1210		
33	Inductionce Bridge	- 20 \%	\bigcirc	29

STEREO HEADPHONES

OHO 2/5 Recommended $25 \mathrm{C} / 5-15 \mathrm{k} / \mathrm{C}$

SE2 Buile in Tweeters and Y olw KC / S
0.10.6
 CALL FOR DEMONSTRATION Mono Switched $8 / 16$ ohms and 4 K Chm! Prise $\mathbf{4 . 4 . 0}$
Stereo Headghone Amplifiers Steree Headphone Amplifiers
tinputs for PU/ Tuner, Battery Mo

* SWR ALIGNMENT

METER

Ideal for all transmitter alignment. Built-in field
serength meter $100 u$ com* serength meter tounA. SomR-
plete. Ready to use. SWR 1:1 to 1:3.
 SWR 3 .. Price $69 / 6$

WELLER SOLDERING a200 Gun Iron g2000 PK Gun Kit
$50 / 6$
$79 / 6$
296
*MULTIMETER Recurn of a papular model. 2000
ohma/V. 0/10/50/500/1000V d.e. 0/50/4A. O/10/250 HA $0 / 10 / 100 \mathrm{k} \cap / 1 \mathrm{M} \Omega$ resiztance. dB and capacitance scales. Size Sin. x
3 lin x Hin. Robuse and easy so
$u s e$. use. Complese with THL 33A $82 / 6$ p.p. 2/6 \qquad Leather case Price 22/6

* all items offered are brand new stock - always in stock *

ELECTRONIC BROKERS

 General Purpone Bingle Pen potentiometric in-
strument for continuous recording for any Loput signal from
10 mV D.C. Suitab for use with spectro photomever and other
Is boratory inatrumente. Chart speed 0.5 to $8.4 \mathrm{~cm} / \mathrm{min}$. Linearity $\pm 0.25 \%$. Fully transistorised. Chart width 200 mm . Input impedsnce 10 K ohms max. Available.8.P. 20
Plain Linear. 8.P. 21 Flat Bed. 8.P. 22 Linearf Log. Plain Linear. 8.P. 21 Fhat Bed.
From $£ 135$ each. P. \& P. $40 /$

PEN RECORDER

Portable 1, 2 and 4 channel pen recorders by Kelvin
Huthes. General purnose recordera providing clear Portable 1, 2 and (Channel pecardeca providing clear tnithataneous and permanent records of phenomens with compparatively high raten of change. The the instriment Immune to the effectis of sibration $81 x^{\text {and }}$ possible chart speeds. chart width 85 mm . to $100 \mathrm{c} / \mathrm{s}$. Single pen with amplifter $899 ; 2$ pen recorder E 85 . 4 pen with mmplifier $\mathrm{E148}$. Also 5 pen recorder complete with amplifiters, apecification
an above but housed in cablaet $£ 225$. P. \& P. extra. ULTRA YIOLET RECORDER ULTRA VIOLET RECORDER
ULTRA VIOLET PHOTOGRAPHIC RECORDER 12 Channel mirror Galvanometer Honeywell 1000 with 6 galvos £280. 24 Channel Sienmic Recorder
ments £325. Carriage extrat.

EH T INSULATION TESTER
From 1. IS K A C. and D.C. Consplete with prober,
new portable recording

Specification. Type: Moving Coll, D.O. Ranke 127 mm . Chart Speeds: $20,60,180,600,1800$ mad
 Weight: 5.5 kg . List price $£ 65$. Our price $£ 35$.

POWER SUPPLIES
AIRMEC 698 KLYSTRON
POWER SUPPLY
Rack mounted (18 in.). Malns operated. Cathode
volte from 1.0 to 2.4 kr , negative. Grid Volts, uegatlve. Cathode Current, 0.18 man nama. Heater
${ }_{2}{ }^{2}$ ht 1.5 SA . Interna/ Modulation-Rquare Whye

+ HIGH PRECISION
* HIGH PRECISION TAANSISTORISED LOW VOLTAGE POWER SUPPLIES

8.C. R. Panel for overload projection. OVERLOAD \& CIRCUIT BREAKER WITH MANUAL REEEET buttor.
RIPPLE Detter, better than 3000 : CHOKE OF CAPACITOR transistorised vailable in the following typen

an lance TRANSISTORISED
ADVANCE TRA
POWER UNITS

METERS

2 in dio mourtion 0 E1.15.0, Carringe
3 l ing (dia. Electrontatio Xilo Voltmeter in wooden Case. £2.15.0. Carriage ${ }^{\text {Precision A.C. }}$ \& D.C. Watmeder, Model B.a7 certificated. Accuracy to $t \%$ up to $133 \mathrm{c} / \mathrm{m}$. Rang
$250 / 450 \mathrm{~V}$, and 0.5 to 1 A . $£ 28 \cdot 10.0$. Carriage $30 /$ INDICATING MEASURING
AMPLIFIER PR 7410
Bultable for vibration aud frequency analyals. Frequency response $10-1,000 \mathrm{~Hz}$. $£ 45$. Carr. $40 /=$ BRAND NEW S.E. LABORATORIES TRANSDUCER TRANSDUCER complete
Frequency D.C. -60 e.p....
Avaluable in the following ranges
Available in the following r
BE150. SESO or SE16BA.

- 4000 p.a.L Also a vailable diferensial types ± 10 p.e. 1 . Also svallable
List price $£ 70+$

p.es. | $+\quad 10$ |
| :---: |
| Our price |
| P.s. |
| 15 |

COMPUTER AND PERIPHERAL EQUIPMENT

PROGRAMME BOARDS BY SEALECTRO
These boards are basically a mult pole multil throw switch derice con sisting of A X-Y Matrix with two
contact decks In the Z Plane running contac degrees to each other. Contact in made by elther, nborting or plugging In pins. Tdeal for protntype wirk, ote.
Boarde avaluble in 24×602 plane Boarda avallable in 24×60 2 plane
212.10.0. Pina arallable $1 / 3$ each

MEMORY PLANES Perrite core methory planes with ired Ferrite cores. Used for buililing your own computer or an an lnterest-
ing exhibit in the dernonstration of compnter. Mounted on plantlo material, Prame $5 \times 8 \mathrm{in}$. Conslating of matrices $40 \times 25 \times 4$ corea each divided into 2 halves with indere and mense and inhliblt wires. 88.10 .0

MULLARD MATRIX
CORE STORE STACKS

A.W. 115 planes 18×32 cores/pe
A.W. 53420 platée 64×64 corea/per
A.W. 5078 planes 32×32 corefloer

Single plane $40 \times 25 \times 4 \quad \mathbf{~} 8 / 10$
Plexiowriter 7 hole punch nad key-
bivard
£198/10
MEMORY STORE M. M. 1044 complete with logic cir
cuits mounted io Imbof cabinet $£ 400$ COMPUTERS Burrougha E 201 225 words itore. $£ 450$ COMPUTER. 802 B Hybrid computer
wth 1 K \&tore, in tull working order. Mith IK store, in tull working order, and compatible for Holerith $80-\mathrm{Hol}$ -card-periphers, Numeroua pros grammes sailable including tel-
programme. Full supporting literae SYNCHRONOUS
MOTORS
Moded 871 r.p.h. and $1 / 00$ r.p.b.
self gtarting
complete with gearing
 50 Hz . New Condition Ex. Equip
ment. $30 /=$ P. \& P. $3 / \%$.

TAPE PUNCH MODEL 257 HOLE
A roultiwire tape punch deaigned for getheral applicatio Involing the conversiou of parallel wire electrical impulne
into punched papertape at 33 characters per second. Unit dignal suppliea.
HOLE NON PARITY TAPE PUNCH
New condition.
OW SPEED 7 HOLE TAPE PUNCH
60 characters per second by well-known manutacturer.
TELETYPE 8 HOLE PAPER PUNCH
MU27
Ale a arallable 5 hole punch BRPE2 an a bove. This model ha
interchangeable heale. Complete with apooler. Price $£ 35$.
HIGH SPEED $5 / 7$ HOLE OPTICAL READER 20 characters per second.

CARD READERS

$\left.\begin{array}{l}80 \text { column } 1500 / 89 \text { model, punch } \\ 80 \text { colurnn } 1400 / 80 \text { model veriffer. }\end{array}\right\} £ 325 \begin{aligned} & \text { Excellent } \\ & \text { condition }\end{aligned}$
HOLLERITH BO COIUMN CARD PUNCH HOLLERITH 80 CERLFIER HI29 2225 .
MUITIRANGE TRANSISTORISED VOLT METER 1063
Emploving eillicon planar F.ET, thin inatrument given long term timhillty and pegliglble drift over a wide temperature range. Wide frequency hand $0-300 \mathrm{MHz}$. Using HPV 1063. thal circuit application. Inout resiatance 1 M .ohm/Voht on ail DC ranges. Accurasy $\pm \% \%$ F.B.D. Meter scale 5in, with 1M difierent colour for diferent nealen.
Bpecial price $\mathbf{£ 4 2 / 1 0 / 0}$ each. Carriawe $\mathrm{E} 1 / 10 / 0$.

TRANSFER CASE

For sending data by personal carrler GPO post, pabyenger traln, elc. Idesl
suitable for deapatching tape $20 / \mathrm{o}$

EICHNER 8 Hole Punch C49/10/0.

EICHNER 8 Hole Reader 629/10/0.

CANCELLED EXPORT
ORDER
90 Columa card sorter and punct
type $425 / 0$ price on application.

BRAND NEW TAPE
SPOOLER

FLEXIWRITER
Both Punch and Read Type Avallable
One coded for Ellintt 803 Computer.

B

LOW COST ELECTRONIC AND SCIENTIFIC EOUPPMENT AND COMPONENTS

phononing nomelinge tools, to with replay/recond/HY ind wepurato erane Incor - lape twing irnek. uncor feet, but will bold 200 V ithen thin athount. 60 Hz $\begin{array}{llll}\infty 0 & H_{z} & \text { unpply. }\end{array}$ P. p. 1n\% HOC COMPUTER MIC eader. Compatible appeed

HI-SPEED QUICK RESET ELECTRO MAGNETIC COUNTERS

6 DIGIT ELECTRICAL IMPULSE

COUNTER
 With electrical and Counter driven by 1100 D.C. 4.400 ohms interlocked with each
 | $79 / 6 \mathrm{p}$ |
| :--- |
 REPEAT CYCLE TIMERS an the motor is enertined. an the motar ${ }^{10}$ ehetriniod. angle cam RB 21 la 2 min. $6 \mathrm{~min}, 3 \mathrm{~min}, 6 \mathrm{mln}$ cyclen Cam RD 28 in., 3 min., min. cycles $(6) 115 /-$ All \uparrow

UNISELECTOR

MINIATURE DIGITAL

Operatea on a
ear projection
The lamp pro-
jecte the corres.
ponding digit on
he condening
lent through ${ }^{*}$
on to the vewing sereen int the frout of the unit.
in. width. 3 is ln . deep. I $1 / \mathrm{tm}$. high. Weight 3\} oz. Charactor wize I In. high, 0.9 with 8 right
hand dectmal point and degree. Available to apectal order, worde and other characters or colour, at cost os
artwork or platea. Liot price 6 gna. Our price $49 / 6$.

LOW OHM SAFETY METER 12 milli-amps B ohme, sulkable for trasing circuits
where current. nust be limited $\mathrm{E} 12 / 10 /=$ p. p. $17 / 6$.
MOTORS

HYSTERESIS REVERSIBLE MOTOR Incorporating two coile. Rech coll when energised
will produce opposite rotation of output shaft

HIGH TORQUE INDUCTION MOTOR. 3-30 oz/anch. Available in the following appeeds only 240 V 50 Hz \& r.p.m... 1 r.p.m.m. 2 r.p. $\cdot \mathrm{m}$.
$120 \mathrm{~V} 50 \mathrm{~Hz} 20 \mathrm{r} . \mathrm{p} . \mathrm{m} .30 /=$ each. \mathbf{P}. d P. $3 /$.

LOW TORQUE HYSTERESIS MOTOR MA23

Ideal for instrument
chart drives. Extremely charet. uneful in arean
where ambient where ambient.
levela are low. High
 alarting torgue enathe relative high inertia londs to
be driven up to $6-o z / \ln$. Avaliable is the following
 $\begin{array}{llllll}1 / 6 \quad \text { r.p.m., } & 1 / 10 & \text { r.p.m... } & 1 / 12 & \text { r.p.m.m. } & 1 / 20 \\ \text { r.p.m. }\end{array}$

HYSTERESIS CLUTCH MOTOR with lategral clutch allowing the motor to drop
out of engngement with the gear traln, thereby out of engngement with the gear train, thereby
facliliating easy reselting when used in thoers or
in lin

HIGH PRECISION MAINS MOTOR $230 \mathrm{y} ~$
$50 \mathrm{~Hz} 1 / 8 \mathrm{hop}$. continuously rated, 3000 r.p.m.
Made by Croydon Engineering Model KA 60 JFB. Made by Croydon Engineering Model KA 60 JFB .
Suitable for caputan motor. Size 8 in. long, ${ }^{\text {Af }}$ In. Suitable for capmtan motor. Bize 8 in . long, if in.
diameter with 6 im . diameter flange and 4 fixling holea.
fition

OSCILLOSCOPES

Goliarton AD 613.2 L...
A Bervo A CD 52.8.2
Phllips 3230 . £85
£49.10.
Furzeh111 0.100 £25.
Armec 249 . £ 5.5.

 Solartron Portable CD $101+£ 80$.
1200 C Stroboscope for measuring rotationa
apeedi of lans and moving mechaniams, etc. Bpeec

UNUSED MINIATURE
 MILLION MAGNETIC

STORAGE DRUM
Type N.S. 138916 write and 16 read headn 258 traoks magnetio storare drum. Each track at 800 r.p.m. Holde 1024 bitt (32 worde of 32 bita). Total storage 250,000 bits. Sultable for many dats atorake problems. 8° hikh, 10° dik. 21° base. $£ 280$, cart. extra.
A.F. GENERATOR TYPE H MODEL I High impedance output from 20 V R M Gi micro volte. Prequency Range $15 \mathrm{c} / \mathrm{h}$ to $80 \mathrm{kc} / \mathrm{s}$. Diveortion ipan than 1%. Aliare wave output 800
mitcro volts to 80 volte peak. £25, carr, 30%, micro valts to 80 volte peak. £25, cart, $30 / \%$
PULSE AMPLITUDE ANALYSER \&105 ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICH MAY BE INSPECTED AT OUR PREMISES DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH

\begin{abstract}
Precision POTENTIOMETERS

TEN TURN 3600° ROTATION BRAND NEW

Res. Ohma	Linearity Per cont	Manufacturer	M odel	Price
100/100/100		Beckınn		160/-
100	0.5	Beckman	A.8	801.
200	0.5	Beckman		60/.
500	0.1	Beckman		701.
500		Colvern	2501.	45/-
500		Foxes	PX4.	401.
500		Colvern	2610.	50/-
2 K	0.5	Beckman	8A1101	60/.
2 K		Beckman	7216.	601.
2 K		Rellance .	GPM15	40/-
10 K	0.5	Beckman		80/-
10 K	0.1	Becktian X		70/-
18K		Foxe:	GPM	$50 /$
18K		Beckiman		60/
20 K	0.5	Beckiman		80/-
30 K		Colvern .	2402.	301
30K		Becknup	8A95C	60\%
30 K	. 0.1	Beckmañ	A. 88	70/-
30 K	. 0.8	Beckman	BA 1692	60\%
30 K	. 0.25	Beckinan	8A 1692	65/-
50 K		Rellance	07.10	45/-
50 K			07.5	45/-
50 K		Colvern	2503.	
50 K	x	Foxes	PX4.	451-
50 K	. 0.5	Beckman		60/-
50 K	0.1	Becknıan		70/
$100 \mathrm{~K} / 100 \mathrm{~K}$		Ford		100\%
100 K	0.1	Beckman	A	70/-
100 K	. 0.5	Beckman		601-
100K		Colvern .	2501.	45\%
100 K		Colvern.	2610.	50/
298K	0.1	Beckman	8A3902	70/
300 K	0.1..	Beckinan		70/

THREE TURN 780° ROTATION

 FIFTEEN TURN 5400° ROTATION
 TWENTY TURN 7200° ROTATION 250 ohus. . Generai Controls. . PX M130
1 Meg. General Controls. . PX M130 sok Reliance.
156 TURN 56, 160° ROTATION FIVE TURN 1800° ROTATION S00 ohma... ColvernCLR 2505
U1.5K SINE COSINE

Kelvin d Hughea BCP5

Colvern 8601
CLR 4602-Cam con
PRECISION BECKMAN 40 TURN 14,400 ROTATION
Wirewound Precision Potentlometer, BE 107A 20 watts
at $40^{\circ} \mathrm{C} .3 \mathrm{~A}$ Diameter. Servo Mounting. 200 K . Brand

GENERATORS
SIGNAL GENERATOR
T.P. 801A SEIn Ware. gilure Wave T.F. 801A Sink Nave. geluare Mave Output Voltage (maximulm) 200 mlllil -volt $\pm 2 \mathrm{db}$. Out put impersnice 76 ohms. Price £180. Packing and carriage $£ 2$. SIGNAL GENERATOR Menerator. Frcquency Range: $120-300$ M. C/a. Auxinar inesa Mrg. e/a Outpuí 75 obms. $\mathbf{E 8 5}$.
MARCONIT.F. I44G Frequency Range $8.5 \mathrm{~km} / \mathrm{d} .25 \mathrm{Mc} / \mathrm{m}$. Output impedance 1 nitero volt, 100 milu.
 PULSE GENERATORS Model 101 Repetilion mile $10 \mathrm{Kz}-10 \mathrm{MHz}$.
Delay $30 \mathrm{n}-1 \mathrm{In}$ m. Bect. Output 10 V . Lnto b0 ohms. 805.
SQUARE WAVE
GENERATOR
requenclen; $1 \mathrm{M} .100 \mathrm{~km} / \mathrm{a} 10 \mathrm{kc} / \mathrm{s} 50 \mathrm{c} / \mathrm{o}$
Land impediance 75 ohtra.
Output Voltage 10 V . 73 ohme.
 at 1 meg. Cycle. $£ 65$.
MARCONI VALVE VOLTMETER TF $428 \mathrm{~B} / \mathrm{I}$ ($10 \mathrm{Kc} / \mathrm{s} / \mathrm{s}$.

VOLSTAT

 Output RST. R.M.E. Lowd 4 ampa

OSCILLATORS
MUIRHEAD DT29 PHASE. METERANDPOWER SUPPLY Tives direct ludication of phase angle
$0^{\circ}-360^{\circ}$ and difierence molevel between two alnusoldal voltugen (iraninfer function) ove
 Digltal Voltmetern $20 \mathrm{m3}$ A.C./D.C. D.C.
ranze $1 \mathrm{mV}-1 \mathrm{KV}$. goos t Digli range 10 microv 2006 + Digit D.C. ranae 10 microv. - 1 KV
Inolated output. Paradel BCD 285 . DAWE 444C AUTOMATIC L.F.
SWEEP OSCILLATOR (NEW) Amplitur OSCILLATOR (NEW, $5 \mathrm{KHz} \pm 2 \% \pm 0.5 \mathrm{~Hz}$. 188 \%wape Rate
of 10 octaven min. Prupey Response 0.5 dB . $£ 89.10 .0$. Corrimge extra.

BRAND NEW LABORATORYTEST EQUIPMENT

 AT LESS THAN HALF PRICEHIGH VALUE RESISTANCE

Specincation, Rnnge: 0.01-111 Meg. in 0.01
Megohm divions. Accuracy: 0.05%. Maximum power rating: 0.1 W per step. Case: Bamne

PORTABLE WHEATSTONE

MUTUAL INDUCTANCE BOX TYPE R. 7005
Speclifcation Range: $0-11.100 \mathrm{mH}$ in 0.002 mH divisions, Accuracy: $\pm(0.3 \times 0.012) \%$ where $\mathrm{M}=\mathrm{value}$ of mutual inductance M mFH wet on decondes except X1=0-15 K/cs. Maximum current: 0.5A for decadea 1A for varlometer

 Coli Galvation. Type: Moving
Congey 1. 0.05 to 5 ohms. 2. 0.5 to 500 ohme. 3. 5 to 500 ohms, 4. 50 to 8,000 ohms. 5.500 to 50,000 ohune
Bcmen:
meter meter Scale: 10-0-10. Case: Moulded platic,
Internal source: 4 V . Dry baitery. Dimenalons $200 \times 110 \times 65 \mathrm{~mm}$. Weight 0.9
List price 225 . Our price $\& 8 / 19 / 6$.
List price 260. Our price $\mathbf{£ 2 2 / 2 0 / =}$

mutualinouct.
ANCE COIL TYPE
R. 7006
Byectrication. Yalue: 0.001
H. Accuracy: $\pm 0.3 \%$,
Operatiag Frequency; Operatiag Frequency;
Kc/a, 10 Kc/s. Maximum
current: 1A, 3A. Resistance current: 1A, 3A. Resistance
of colla: 4. ohm. 1 ohm.
Case: Moulded plastic. Liet price 8 ras. Our price $50 /$ -

Whear for Components

TEGHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME

ADDRESS

LINEAR INTEGRATED CIRCUITS FOR ALL YOUR REQUIREMENTS
Sinclair type IC-10
Plessey SL403A 3 Watt Audio Amplifie
G.E. type PA230 Low Level Amplifer
G.E. type PA234 1 Watt Audio Amplifier G.E. type PA2372 Watt Audio Amplifier G.E. type PA2 465 Watt Audio Amplifier RCA type CA3000 D.C. Ampllfier
 RCA type CA3011 Wide Band Amplifier ACA type CA $3020 \frac{1}{2}$ Watt Wide Band Amplifier RCA type CA3028A Differential/C a scode A
RCA type CA3029 Operational Amplifier RCA type CA3035 Ulira High Gain Amplifier Muliard Type TAA263 A.F. Amplifier
Mullard Type TAA293 General Purpose Ampitfier Mullard Type TAA310 Record/Playback Pre-Amplifier Mullard Type TAA 320 MOS L.F. Amplifier Mullard Type TAA 320 MOS L.F. A
G.E. type 2N5306 Darlington Pair
G.E. iype DI3TI Programmable Unijunction Transistor

ADD $1 /$ each to the above i.c.s. for data sheets if required. Data sheets may be purchased separately at 1/6d. each post free. Issued free with SL403A only

1 WATT AMPLIFIER MODULE TYPE PCM 1
This amplifier unit is a printed circuit module incorporating the popular and well tried PA234 i.c. amplifier. The unit is a COMPLETE AUDIO AMPLIFIER and requires no external components, you simply connect an 18 volt power supply and a 15 or 16 ohm speaker or headphone, even the supply smoothing capacltor and the output capacitor are included I The overall dimensions, including capacitors. are $2 \frac{1}{* " *}^{\circ \prime} \times 3^{\prime \prime} \times 1^{\prime \prime \prime}$. The input for 1 watt output at 1 kHz is typically 300 mV into 100 kohms .
This unit is avallable at only $36 / \sim$ net. complete when descriptive leaflet or $70 /$ net per pair.

CONVERTOR/BATTERY CHARGER. InDut 240 v $50 \mathrm{c} / \mathrm{s}$. output 12 v 5 amp DC. Input 12 v DC, output 240 v AC. 170 watt max. Witir fuse and indlcator lampa. Size $96 \times 10 \times 4 t \mathrm{in}$. Weikht 191 lb . An extremely compact unit that will kive many years relable service. Supplied with
plug and lead. Only $4 / 10 /-\mathbf{P}$. \& P. 15/- extrit. As above-fully serviceable-perfect interior but solied exterior cases, G3. P. \&P. 15/.
G.M. TUBES. Brand new. G24/G38/GB0 at $27 / 6$ ea
G53/i, brass cased. 66 ea.
PHOTOMULTIPLIERS. EMI 6007X at $£ 8 / 10 /-$ ea.
TRANSISTOR OSCILLATOR. Variable fremnency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ volt gruare wave o/p, for 6 to 12 v DC input. Size $1 \| \times 1 \mathrm{i} \times 1 \mathrm{i} \mathrm{in}$. Not encapsulated. Brand hew. Boxed. 11/6
TIMER UNIT. Standard primary tranaformer kiving 18V 4 anap., G.E.C. bridge rectifier in bench or wal one second timer sub-chaswis. Checked and tested $22 / 15 / 0$. P. \& P. $15 /$.

COUNTENAY TIMER sub-chasgis with 2-12AU7. ransistor, relay etc. Requiring 12V. A.C. or D.C. to operate $22 / 6$.
As above but 1.5. 10 or 15 minutes. State which. 25/- ea V.H.F. RECEIVER TYPE 715 by BCXC, Complete conversion 2 and \& wetres In sood conition Sut. Idea with conversion dath. Only $£ 3 / 10 / \ldots$. P. \& P. $7 / 6$ eat.
RECEIVER UNIT TYPE 114 Frea. coveraue 134. RECEIVER UNIT TYPE 114. Frea. coveriue 1124 $15 B \mathrm{mc} / \mathrm{B}$ I.F. out $9.72 \mathrm{mc} / \mathrm{s}$. $8 / z \mathrm{ze} 7 \times 18 \times 51 \mathrm{in}$. In origina service carton, complete with salves. connections, ett
$32 / 6$ ea. \mathbf{P} d $\mathbf{P} .5 /$ ea.

RELAYS

Omron/Schrack octal based plupein relays. 2 mole c/o 5A. 6 V only. Brand new. Boxed. $12 / 6$ ea.
G.E.C. pole c/o B/12v operntion 180 ohms. Platinum contacts. Brand new. Boxed $12 / 6$ ea. Min. VARLliY type VP4, 4 pole c/o 430 ohm or 15 K/obm. Brand new 6/6 ea.
Min. SIEMENS. 4 pole c/o. 24 V operation. Bradd new 8.T.C. sealed 2 pole c/o 48 V . 2,500 ohm $48 \mathrm{v} .3 / 6$ ear. 12 v 7/- еa.
CARPENTERS polarised Single pole c/o 20 and 05 obm coil as new, complete with bave $7 / 6$ ers. Stngle pole c/o 680. 1,110 and 1.570 ohm coil. As new $6 / 6$ ea.
Brand New. Single Pole c/o (type $5 A 2$). 2×1200 ohms. Brand
$8 / 6$ ea.

COLVERN POTENTIOMETERS

Brant new. 5: 10; 50: 100; 250; 500 Mow MORGANITE 250 K all at $2 / 6$ ea. Special Brant $9 /-$, our price $3 / 6 \mathrm{ca}$
INSTRUMENT 3^{*} Colvern. 5: 25; 50; 100 ohms: 2.5 : 25 K . All at $7 / 6$ en

TRIM POTS Prisnton-solder lugn 5, $10 \% 25 \mathrm{~K}$ at 7/6 ea. Pins- 10: 20:50:100: 200: 250: 500 ohme: 2.5 25 and 50K at 15/-ed
DARSTAN-preset-sealed $\frac{1}{2}^{*}$ dia. 1 high. $1: 2$ and $5 K 2 /-$ HIGH RESOLUTION $25 K 80$ turns. Complete with
COLVERN 50K Ten turn complete with dial $f \mid P$. \& P 2/6 ea.
GENERAL CONTROLS. 100K Ten turn. Brand new.
Hoxed 25/- er.
ALMA precision resistors 100 K : 400 K : and $008 \mathrm{~K}-0.1 \%$ $5 / 6$ eal : $3.25 \mathrm{~K}-0.1 \%$ //- ea.
DALE heat sink resistors, non-inductive 50 watt. Brant new. 15 ohms- $6 / 6$ en : 8 2K-5/- Fxcellent dummy kad

CAPACITORS

ERIE feed through ceramicons 1000 pf—-9d. ea.
Sul)-min. TRIMMER isquare. 8. 5pf. Brand new $2 / 6$ ea Concentric TRIMMER $3 / 30$ Df. Brind new 1/6 en
DUBILIER Electrolytic. 32 mfd 350 D D.C. Brand new $1 / 9$ еа
EHT 1000 pf 20 KV working, ideal transmitter blocking capacitors 6/6 ea.
VISCONOL EHT. Brand new 0.002 15kV 8/6 en:
E.H.T. 7.5 kV worktng $0.25 \mathrm{mffl} 8 / 6$ es. : Brand new 5 kV $0.25 \mathrm{mfd} 10 / 6$ ea.: $10 \mathrm{kV} 0.05 \mathrm{mfd} 7 / 6$ ea.
GEARED MOTORS $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ synchronous. Geared GEARED MOT ORS 240\% 50 c/B synchronous.
DIODES 1 N914. Brand new $1 / 3$ ca.: $12 /$ doz: $\mathbf{6 4}-100$; 225-1,00
PHOTOCELL equivalent OCP $712 / 6$ ea
BURGESS Micro Switches V3 5030. Brand new $2 / 6$ ea.
BULGIN patel mounting Lanap holders. Red. Brand new 2/3 ea
PLUGS \& SOCKETS. New \& ex. eq. Pleasey: Paignton Cannon; Electromethods: Belling Lee; Hulain etc. etc MINIATUR
MINIATURE SPEAKERS 15 ohm 100 MW 2 in . dia-
meter. Brand new, $7 /=$ ear. P . \& P. $2 / 6$ ea.
TRANSISTORS BC 114-NPN Low noise hlsh galn audlo. etc.: BC 116 -PNP General purpose $200 \mathrm{mc} / \mathrm{s}$. FI brand new equipanent. Guaranteed perfect. Good
lear lensth. $2 /-$ ea.
Also RT Microloric L 9014 I.C. 8 lead TO-5 can. Fan out
16 dual 2 input nand nor gate, capable of F / E aution 16 dual 2 input nand nor gate, capable of F / F aution at $20 \mathrm{mc} / \mathrm{s}$ or non inverting trate or kate + invert

CASH WITH ORDER

TEST GEAR

OSCILLOSCOPES
E.M.I.

WM 2 DC- $13 \mathrm{mc} / \mathrm{c} 65$
E.M.I. 3794 DC- $5 \mathrm{mc} / \mathrm{s}$ \& 15

SOLARTRON QD 910. Storaze scope $£ 170-£ 315$
SOLARTRON 7118.2 D.B. DC-9 nıe/g 660 SOLARTRON $643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s} \mathbf{E 8 0}$
SOLARTRON 513/523 DC- $10 \mathrm{me} / \mathrm{B}$ © 35
SOLARTRON 568 DC- $6 \mathrm{mc} / \mathrm{s}$ © 18
COSSOR $1035 \mathrm{DR} . \mathbb{E} 20$
COSSOR 1049;1049 Mk. 3. DB. E22:10 and
 MARCONI
TF 956 Audio Frequency Wiattmeter $£ 15$ Carr. 10/.

TF 369 N. 5 Impedance Bridge 675 Carr. 80
TF 144G Sisnal Generator, Serviceable, Clean \& 18 F 885 In Exceptional condition $\mathbf{6}$ (30 Carr. $30 /$ TF 885 Virleo Osclliator Sine/Square 640 Carr. 30/ TF 899 Nillivolt meter $E 8$ Carr. 10/ TF 517 VHP Generator $10 \mathrm{mc} / \mathrm{s}-300 \mathrm{mc} / \mathrm{s} \& 6$ Carr. s 1 TF $488 \mathrm{~B} / 1$ Valve voltmeter 4 (Carr. $10 / 8$
TF $428 \mathrm{BB} / 2$ Valve voltneter 610 Carr. 10/-
TF 33813 Attenuator 65 Carr. $10 /$ - 645 Carr. $30 /$ SOLARTRON
Pulse generator POS $100 C 50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{e}$ £25 Carr. $£ 1$ Laboratory amblifter AWis51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s} ~ 635$
Stablised P.U. SRS 151 A $£ 20$ Carr. 30%

Generator CT $3682-295 \mathrm{mi} / \mathrm{s} \leq 50$ Carr. 15/-
Generator CT $3682-225 \mathrm{mc} / \mathrm{s} \subset 50$ Carr.
Generator $50 \mathrm{kc} / \mathrm{s}-80 \mathrm{mc} / \mathrm{s} \mathrm{C} / 6 \mathrm{Carr} .15 /$.
Teatmeter No. 1 \& 14 (arr. 15/
Electronic Teatmeter CT 38. Complete fl 18 Carr. \&1 SPECIAL. Multimeter CT471A. Battery opersted. fully transistorlmed, sensitivity 100 M ohw/ V measures a.c./d.c. voltage ($12 \mathrm{mV}-1200 \mathrm{~V}$ acaleg, $+/-$
$3 \% /+/-2 \%$ f.s.d.) a.c/fl.c. current (12 microA$3 \% /+l-2 \%$ f.s.j.) a.c./cl.c. current (12 microA-
1.2 A scales. $+/-3 \% /+/-2 \%$ f.s.d.) realstance 1.2A scales, $+/-3 \% /+/-2 \%$ f.s.d.) resistance
(12 ohin-120M ohn scales, $+/-3 \%$ m.s.i.). h.f. (12 ohm-120M ohm scales, $+/$ - 3% m.s.i.). h.f. to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz). Brand new 675 Carr. $30 /$.
CT 471 R, as above by G. \& E. Bradley
675 Carr. $30 /-1$ CINTEL
Transistorised Nucleonic Scalers with adjustable discriminator. 8 meters display $0-9$ giving count of 10 to the 5. In a new condition © 30 Carr. $15 /$.
Wide Rance Capacitor Bridge $\mathbf{E} 25$ Carr. 15/-
Wide Ranke Capacitor Bridge ©25 Carr. $15 /$.
Slne and Pulse Generator type 1873 £25 Carr. 15%

AIRMEC

Valve Milluvoltmeter type 264 . $3 \mathrm{MV}-1 \mathrm{~V} £ 20 \mathrm{Carr}$. \&1 Counter type 805.6 decades. Hright Vertical displa Kate facinties. Sery

SIGNAL GENERATOR/WAVEMETER type 61 $10 \mathrm{w} 160 \mathrm{mc} / \mathrm{s}$. Bultt in crystal markers. Calibrated piston atenuator. Standard mains innut. Excellent condition. 12/10/-. Carr. 30/.
SIGNAL GENERATOR Type 62. 95-180 inc/s in one range. $1 \mathrm{mc} / \mathrm{s}$ and $10 \mathrm{me} / \mathrm{s}$ Internal cryatal markers: provision for external crystal marker. Sine and sanare wads. etc. Nlce condition. $£ 40$. Carr. $30 /$.
SIGNAL GENERATOR type CT 478 by W. H. sanders. Fren. rance $1.3 \mathrm{kmuc} / \mathrm{s}$ to $4 \cdot 2 \mathrm{kmc} / \mathrm{s}$. Output
AM/FM OSCILLATOR Type 1 CT $212.85 \mathrm{kc} / \mathrm{s}$ to
HEINZ GUNTHER AM/FM Generutor $0-200 \mathrm{mc} / \mathrm{s}$. € 30 Carr. El
SIGNAL Generator CT 53. Complete with leads. Good condition. 110 Carr. $15 /=$
FREQUENCY Meter BC 221. $£ 17 / 10 / 0$: with bullt-in stab). P.U. $\leq 22 / 10 / 0$ Carr. $15 /-$ With Charts.
DIGITAL VOLTMETER type BIE 2114. 1 mV to MIC-O.VAC type 22 (CT54) Volts: Current: Ohms D Cto 200 me/s with probe, leads etc, As new $€ 8 / 10 / 0$ P. \& P. 10

VIBRATING REED ELECTROMETER type N 572
by ECKO. Range 10 to the -14 . Max sensitivity FSD for 1 of 0.03 Micro-micruanus. $£ 25$ ea. Carr. £1
RACAL FREQUENCY COUNTERS
SA 204 decades $100 \mathrm{kc} / \mathrm{s} £ 20$ ea
SA 216 decades 10 uc/s $£ 45$ eas.
SA 28 28 8A 21 with convertor extending range to
GRAUMONT-KALEE Flutter meter type $584<35$

GENERAL RADIO Precision Canacitor tyile 722.50 D. 0280 Nf. 275 Model 222 F at 255
Miniature SCOPE type 1200 B . Ideal TV servicing etc. ADVANCE Sixial Generator type D1. 2 me/s to 190 nefs. Sine and syuare mod. With origthal charts. Excel Jent condition Liz/10/0 P. \& P. el
SERVOMEX. Stabilized D.C. Power supplies type DC3. 0-30 Volta. 0.7 amps. Separate voltare and current meters. 635. Type 38. bench mounting. 0.15 Volta.
TRANSISTOR Stabilised Power Uuit. 48v. 4 amp. Manufactured by E.M.I. Opet chapils. Brand new Highest qually. size 10$\rangle \times 5$ Kotin. hish. E6 ea.
RACAL stablizer unit 24 V . raw DC in 20 volta 1 amp tab and 12 V .5 MA Zener atabout. Brand new condlition diakran. 35/- ea
MAINS FREQUENCY METERS whth large 270 deg. Dial calibrated 45 to 65 cycles 4 in. diameter. In original ervice carton. E3/10/-. P. \& P. 7/6
19in. Rack Mountlng CABINETS 6ft high 2 ft . deen. side and rear doors. Fuly tappen, complete with bame and wheels. 612/10/0 Carriage at cont.
EPSYLON 4 track tape recorder using In. tape Metereel Input. Very
eraser and tape. $\mathbf{C Y 5}$.
MULLARD Transistorsed Analogue to Digital Con-
SUNVIC DC chopper Amplifler type DCA 1. Superb condition. £22/10/0 ea. Cart. 20/:
SEQUENCHAL TIMERS 8 Individual timer circults each with 0.100 sec calibratei dials. Ineal asplays, processes. etc. Standard mains input $£ 25$ Carr. 25/-
EX-SOUTHERN ITV CAMERA with imawe orthicon abe and single lens. Mounted on tripod. Sold as seen. $\in 40$ SOLATING TRANSFORMERS 240 V in 240 V 7 KVA out. As new. $£ 25$ ea. Carr. £2/10/*
DESK Teleyhones. Current type. 3 wire red, green, white. Ideal extensions etc. As new $\mathbf{6 3}$ ea.
MODERN Transistorised 10 line automatic rlesk ton exchanke. Complete with 10 A.E.I. Telephones, standard G.P.O. type dialling to call any other lise. Exchange size $16 \times 5 \times 6$ housed in attructlve mahogany case.
Complete get. 655

METERS

ELLIOTT Portable Reflecting Voltmeter. 0° dial acaled 0 to 12.5 Ranges $13.5-25-37.5$ Frequency range DC $02.5 \mathrm{kc} / \mathrm{s}$. Accuracy 0.5 fsd. Adjustable feet, built in evel, magnetic shield, movement lockin In the quality
wood case. $\mathbf{2 0}$ P. \& P. 15/*
 E2 er.; $0-3.5 \mathrm{~K}$
$\mathrm{KV} \mathrm{EA} / 5 / 0 \mathrm{em}$.
TAYLOR $100 \cdot 0-100$ Micro amp bealed size $4 \times 2^{\circ}$ with internal lamp scaled 6-0.6 $\quad 1 / 10 / 0$ ea.
GRIFFIN \& GEORGE 3° round in sloped open ended case with terminals 8 types 0/20: 0/100. All $50 \mathrm{c} / \mathrm{s}$

TRANSFORMERS. All standard inputa.
18v 6 amp and $12 v$ i amp. Sep. Windags, $18 / 6$ ea

18 kV 12 amps at 63 ea. | $350-0-35075 \mathrm{~mA}$. $5 \mathrm{v} 2 \mathrm{anmps} \times 2$. $21 /-\mathrm{es}$. Size $3 \times 14 \times 4$ in. |
| :--- |
| Gardners 6.3 A |

As new. $9 / 6$ eat. P. \& P P. 3/- ea.
Gardners. Potter. Multi 6.3 's comblne to give 48 v at 4 annms or 6.3 at 45 A . With $350 \cdot 1)-350$ at 50 mA . 2/10/= ea.
Parmeko/Gardners. Potted. 475-60-0-60-475 at 160 mA : eparate winding $215-0215$ at $45 \mathrm{~mA}: 6.3 \mathrm{v} 5 \mathrm{~A}: 6.3 \mathrm{v}$ 754: 5 v 3A. As new. 63 ea.
Gardiners 400-350-0-350-400 at 250MA; 0/4/6.3v $4 \operatorname{amp} x$ 2:0/4/8.3 2 amp: 0/4/5 3.5A. In orlginal boxes. C4/10/Gardiners 2 kV 10 MA and 4 volts $\times 2$. $\mathrm{E4} / \mathrm{HO/-}$ ea lucl. postage.
Parmeko 65 F 1 amp . Separate $0-18-24 \mathrm{v}$ at 0.5 amp . $30 /$ ea. Gard/Parm/Part. $450-400 \cdot 0-400 \cdot 450$. 180 MA. $2 \times 6.3 \mathrm{~F}$. 63 eat
ADVANCE Constant Voltage Trans. 6 volts 50 watt Gardners 4 v 30 anm. Brand new $£ 1 / 10 / 0$ incl. nostage. 3 for $£ 3 / 10 / 0$ incl, uoatake.
Gardners $5 v 90 \mathrm{mp}$. Brand new $\mathbf{\ell 2}$ an. incl. postage. CHOKES. $5 \mathrm{H} ; 10 \mathrm{H}: 15 \mathrm{H}$; up to $120 \mathrm{~mA}, 8 / 6 \mathrm{ea}$. UD to 250 mA 12/6 ea.
Hrand new. HADDON 10 H 160 mA . $12 / 6$ ea.
Iarge quantity LIT, HT. EHT traisformers. Your Panel switches DPD'T ex en, $2 / 6$ ea.; DPST Brand new 1/6 ear. DPPDT twice, brand new $6 /=$; heavy duty DPBT brand new 6/- ea.
PRECISION continually rotarable stud switches. ugle pole. 80 way, can be stacked if required. 23 ea. PRECISION rotary stud switches 2 pole 12 W size 2° 84. 8 shat. 221010 ea.

Min. SEALED \& pole 3 way and 3 pole 4 way rotary

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

SPECIAL OFFER OF SERVO SYSTEM TEST EQUIPMENT

We can offer a fine selection of Servo Test Equipmont at extremely attractive prices. All items are guaranteed to be in fully oneach item are available, the praterically subject to prior sale. Any items will be reserved by telephone so Orpington 31066 or 33976. Further technical information available on request to Orpington but you will note that all instrument are Standard atalogue Items.

TRANSFER FUNCTION ANALYSER
Solartron. Cate No. OS $103 / \mathrm{HP} 233$ 2-1 provides over the requency range $0.1 \mathrm{~Hz}^{\text {to }}$ I KHz the Cartesian Co-ordinates for the Nyquist diagram of a network. It may thus be used
for servomechanism and regulator testing and for the analysis of L.F. networks. Original Maker'A Price $\mathbb{K} 1,450$. Our Price 4400 for the two units.

Solartron Carrier Converter JXGAIA extends the use of the above to the examination of Carrier Systems from
50 Hz to 400 Hz . Orizinally $£ 365$. Now offered at $£ 100$.

Solarscope CD $513.2-1$ recommended for use with the bove. Orizinally $\mathbf{2 2 2 0}$. Our Price $\$ 60$.

Wayne-Kerr Tranafer Function Computer Type Alloo. Frequency range 0.015 to 500 Hz . Time constan T 0.001 to 4 secs. Output level 30vpl. max. 2 ohms. Input
sensitivity $0.03 v / \mathrm{cm} 2 \mathrm{M}$ ohms. Determines transfer functions sensitivity harth order numerator terms and slxth order denominator terms. With handbooks. Originally $\& 1,250$.
Our Price $£ 350$.

Solartron 2-phase L.F. Oscillator BO 567. Output $5 \mathrm{~mA} . \mathrm{rms}$. at 90 degrees phase difference. Originally \& 210 Our Price 665 .

Muirhead Wigan Decade Oscillater Type D.650A
Ouspue i Mz so 110 KHz at 150 y max. Our Price 885. Precision AC Millivoltmeter. Solartron Cas. No. VF252
Frequency range 10 Hz to 100 KHz . Nine ranges and 10.1 attenuator covering 1.5 mv to 150 VHz (we have one instrument callbrated +20 pF . Inouz dB). Input impedance 30 M ohms shunted by 30 pF. Input attenuazor I M ohm ratio $10: 1$. Pen recorder output (K ohm at
Originally Cl 90 . Our Price E 60 .

Gertsch Complox Ratio Bridge Model CAB2B. Six digits in phase, four digits in quadrature. Our Price $\mathcal{C 2 0 0}$

Pulse Generator Solartron OPS 100C. Pulse amplitude iv to 100 y and - 10 y . Internal trigger at $50,100,250,500 \mathrm{~Hz}$ and $1,2,5,5$ and 10 KHz . Pulse delay 2 usec to 4,000 usec

Double Pulse Generator Nagard T 5002. $0.1 \mathrm{~Hz} \mathrm{~s}^{\circ}$ 100 Khz prif. I usec to I sec delay, I usec to I sec pulse width,
20 mv to 50 v amplitude. Our Price $£ 80$.

GENERAL TEST EQUIPMENT
Cossor Milli-microsecond Pulse Generator Type 1097. or checking high speed counters, etc.
engeh determined by cable length. Originally length dete
Prlce L 40 .
Cintel Square Wave Pulse Generator Cat. No. 1873. 250 KHz pri. Our Price 240 .

Airmee Signal Generator Type 701. Range $0-30 \mathrm{KHz}$ Our Price $\mathcal{M 5}$.

Solartron Direct Reading TMS. Cat. No. BM 519. For measurement on eransmission lines or 36 . 150 or 600 ohms impedance. Range -70 dbm $80+36$ db

Reference Power Supply. Solartron Type AS756.2 ta0. output at 200 mA . Originally tus. Our price Furzehill Beamswitch Unit Type \$500. Our price $\mathbf{6} \mathbf{2 0}$. Avo Valve Characteristic Meter Mk. 4. Our Price 650. k. 3 627.10.0d

Please direct your orders to our Orpington address. Oelivery on all items will be the time taken to fully stervice the
lease do not expect same day deliveryl-another reason or ordering immediately!

For your
SYNCHRO AND SERVO COMPONENT REQUIREMENTS
contact our Orpington office or Lydd works immediately!

TANTALUM CAPACITORS		
Send for Stock list withlowest prices!	We hold large stocks by S.T.C. DUBILIER KEMET PLESSEY GENERAL ELECTRIC	Immediate delivery!

G.E.C. SEALED RELAYS

A very wide range of these difficult-to-obeain items in stock.
tock list available.

PRECISION POTENTIOMETERS

Numerous instrument types, continuous rota tion potentiometers for control application and HELIPOTS in stock.
Stock list available on application.

PLUGS AND SOCKETS AND CONNECTORS Large stocks of PLESSEY Mk. IV or VI, 104; PAINTON LECTROMETHODS; CANNON; BELLING LEE; AMPHENOL; TRANSRADIO items.
Enquiries to Orpington or Lydd.

Enquiries invited for our
AUDIO EXECUTIVE SIXTY all silicon 60W AMPLIFIER
Three channel input with full mixing facilities. Output 60 Watts RMS into 8 ohms $<\%$ T.H. Distortion. Full details on application to Orpington or Croydon. PRICE 858.15 .0 .
TRADE SUPPLIED.

Seroo and Electronic Sales Limited

Electrical and Servo Control Engineers - Electrical Suppliers. Engineering Stockists - Aeronautical Suppliers
43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976
19 MILL ROAD, LYDD, KENT (Works). Phoné: Lydd 252 67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 01-688-1512 (Croydon)

NEW 48" FOLDING MACHINES SHEET METAL bench model by parker

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
One year's suarantec.
Money back if Money back if not satisficd. Send for details:

A. B. PARKER

Also the well-known vice models of
$36^{\circ} \times 18$ gauge capacity.
$24^{\circ} \times 18$ gauge capacity. Carriage Free Carriage Free

TRANSFORMERS

 COILS CHOKES
LARGE OR SMALL QUANTITIES

TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS miniature Transformers
relay and instrument coils, etc. vacuum impregnation to approved standards

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01.6532261

CR4.8LZ

WW-096 FOR FURTHER DETAILS

thansistoaizeo a.f. signal generator TPPE R21 Frequency: 15 Hz to 20 kHz in three langes Constant Amplitude over the whole the quency range frequency Reading: Direct off the scaie Frequency Accuracy: 5\% ovee the band Mpacer 3\%. Dutput Voltage: 0 to IV RMS con Ivoushy ranable. Harmonic Oistoction: Better than maxime3in
PRICE: f1t.10.0 lincluding barrovy. Cort $9 / 6$ (U.K. only).

transistar power supply type r3z Dutput Voliage: $0-15 V$ camtinuousicy variable Output Current: $0-0.5 A$ fup to 1 A at howet voltage Setringsl. Repulation: Full load to no load condition berter than 0.18. Rippie: not greater then 1 mV p/p Automatic circuit protection against ovelloads Dimansions: 5inu5inuSin deap Voltage and Current indicsted on PRICE: fl8.10.0. can. 12.8 tu.K only.
O. \& R.ELECTRONICS LTD.

R
WORKS ADDRESS: 5 LONG STREET, LONDON, W.2.

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus, Semitron, Keyswitch,Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e.g. IN9141/3d. \square IN916 1/11d. \square 2N697 4/5d. \square 2N706 2/3d. \square 2N706A 2/9d. \square 2N929 5/8d. $\square 2 N 1613$ 4/8d. $\square 2 N 3011$ 9/1d. $\square 2 N 3053$ 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. BFY50 4/8d. \square BFY51 3/9d. \square BSY27 18/- \square BSY95A 3/3d. \square C407 4/6d. \square CA3012 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. \square OA200 1/9d. \square OA202 1/11d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

 $\begin{array}{cc}\text { Operation } & \left.\begin{array}{c}150 / 230 \\ \times \quad 16 \mathrm{in} . \\ \text { Weight }\end{array}\right)\end{array}$ l141b. Olfered in wood working. condition
 Ke/a. $£ 17 / 10 /-$ Carr. $30 /-$ -
 11 valve hlah
grade oommanlostion
mecelver suit recelver suit
sble for tropl-
cal use. $1-20$ Mc/a. on
band. Ami
$\mathrm{CW} / \mathrm{FM}$ opera. tion. Incorpor-
atea inection vernier drive B.F.O. Aerial trimmer, internal spumker and
12 v . D.C. buteras power supply. supplied in
exellent condition, fully $\mathrm{E} / 5.0 .0$ Carr. lested and checked. OSCILLOSCOPES BARGAIN

An excellent general purpose
D/B osilloscope. T.B. 2 cpa D/B usclloscope. T. B. 2 cpa
$750 \mathrm{Kc} / \mathrm{m}$. Band width $5.5 \mathrm{Mc} / \mathrm{l}$ Sensitivity $33 \mathrm{Mv} / \mathrm{cen}$. Oper ating voltage $0 / 110 / 200 / 250 \mathrm{v}$ A.C. Supplied in excellent worklng condiliton, $222 / 10 /$ Or complete with all weces
nories, probe, leads, Ild, etc. 225. Carriage $30 /-$.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
£20. Carr, 20
CLASS D. WAVEMETERS

A erysal controiled hetero-
dyne irequency meter cover-
ing $1.7-8$ Mc/s. Operation ina 6 v. D.C. Ideal for amateur
uat. Avalublel 1 no good used
condition 25.18 .6 Carr. $7 / 6$. Or braud new with accessorie:
£7.19.6 Carr. $7 / 6$.
CLASS D WAVEMETERS No. ${ }^{2}$ Crystal controlled. 1.2-19 Mc/a. Mains or 12v. D.C.

operation. Complete with callbraton charts | Excellent condition $£ 12 / 10 / 0$. Carr. $30 /$-. |
| :--- |

LELAND MODEL 27 BEAT $0.20 \mathrm{Kc} / \mathrm{s}$. Output 5 K or 500 ohma. $200 / 250$ v
A. O. Ofrered th excellent condition, $£ 12 / 10 /-$ A.C. Onered
Ciarringe 10%.

[^13]COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO Built-in speaker and phone jack. Metal cabinet Operation $220 / 240$ v. A.C. Supplied brand new
guaranteed with instructions. $13 g$ gns. Cars, $7 / 6$ guaranteed with instructions. 13gas. Cars, 7/6. EDDYSTONE V.H.F. RECEIVERS Boh 19165 Me/g. 2150 .

LAFAYETTE SOLID STATE HA600
5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE

 detector Variable BFO Noisolimitor. \& Meter operation RF gain control, size 15tn, \times 日fin. $\times 8$ 8in S.A.E. FOR FULL DETAILS.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE
4 band recelver covering $500 \mathrm{Kc} / \mathrm{m}$ Lo $30 \mathrm{Mc} / \mathrm{m}$, continnoung and electrical bandupread on $10-15,20,40$ and 80 metrea.
8 valve plun 7 diode circult. $4 / 8$ ohtn output and phone 8 valve plun 7 diode clrcult, $4 / 8$ ohtn out put and phone
jack. $88 B-C W$. ANL - Variable BFO 8 meter.
Bep. Bandspread dial 1.5 w . Wariable RF and AF galis controlio. $115 \mathrm{~F} / 250$ With instruction manual and service daLa. $£ 42$. Normally Es .10 .6 . Our price $£ 3.15-0$ if purchased with

Taio TS 510 Amateur Transceiver with speaker and mains P.S.U. 62120 TRIO JR 500SE $10-80$ Metre Amateur Receiver 66910

LAFAYETTE HA. 800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

$$
\begin{array}{r}
\text { SIX BANDS 3.5-4, 7.7.3, 14-14 } \\
28.29 .7,50-54 \mathrm{Mc} / \mathrm{s} .
\end{array}
$$

Dual converwion on all bund. $2 \times 4.5 \mathrm{Ke} / \mathrm{m}$ mechanical altern ${ }^{\text {Product detector. Variable B.F.O } 100 \mathrm{Kc} / \mathrm{s} \text { eryntal callbrator }}{ }^{8}$ ' meter. Huge alide rule dial. Operation 230 AC or 12 v DC Bize $15^{\circ} \times 91^{\circ} \times 81^{-}$. Complete with instructhon unanual 257.10.0. Carr. Pald. ($100 \mathrm{Kc} / \mathrm{B}$ Crystal $38 / 6$ extra.

TRIO JR-310 NEW AMATEUR BAND 10-80 METER RECEIVER IN STOCK ©77.10.0

RCA COMMUNICATIONS RECEIVERS AR88D
1atest releane by minimery BRAND NEW In original cases.
$110-250 \mathrm{v}$. A.C. operation. Prequency in 6 Hunds. $535 \mathrm{Kc} / \mathrm{s}-\mathrm{t}$ 32 Mc/s continuous. Output innpedance 2.5 -tino ohis. Ineorporating crystal tilter, nolse 1 hmiter, varisble BFO,

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new trandiatorised receiver corvering 152-174 Mc/a. Fully tuneable or crystal controlled (not supplied) for nixed trequency operation. Incorporaten INTEdial. Squelch and volume controls. Tape recorder output.
750 and.

TELETON MODEL CR-IOT AM/FM STEREO TUNER AMPLIFIER

A new model from Teleton. 31 solid ntate devicen.
$i+t$ watt output. laputs for ceramiceryatal
 FM $88-108 \mathrm{MHz}$. Automatic FM 8 terco receptinn. Btereo Indicator. Controls: Tuning, funetion
belector. Tone and R is volume controls. APC

Type MR.38P. $121 / 32 i n$. square fronts
 50 mA
100 mA

$27 / 6$ $27 / 8$

poll range of other sizes in stock-send sae for leaflet
LAFAYETTE STEREO AMPLIFIER MODEL STEREO 10

Completely transliftorised 5 watta per channel I. H.F. mnule power. Inputs for gmm nind tuner. Beparate volume controls and variuble tone control for han and Treble. A compact
aize, big periormance stereo amplifler ldeal for itmited apace
 Price fll.19.6 Carr. 710

POWER RHEOSTATS

High quality ceramic construction. Winding eminevided Heavy duty brubh wiper. Continuous rating. Wide range available ex-stock
 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, $81 / \mathrm{F}$. P. \& P. P. $1 / 6$.
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms, $27 / \mathrm{S}$. P. \& P. $1 / 6$.

SOLARTRON CDTIIS.2. DOUBLE BEAM OSCILLOSCOPE

AVO 48A
Perlect or
\& 12.10 .0

PLESSEY SL 403A
LESSEY SL 403A
40/6 post paid.
TE-65 VALVE VOLTMETER

High quallty lnstrument $\begin{array}{cc}\text { Whth } 28 \text { ranges. } & \\ \text { D.C. } & \text { volts } \\ \text { A. } & 1.5-1,600 \\ \text { A.C. } & \text { volts } \\ 1.5-1.500 & \text { F. }\end{array}$ A.C. volts $1.5 \cdot 1.500{ }^{\text {P }}$
Restatance
up to 1,000 Renigance up to 1,000
megotms. A.C. operation.
z20/240v. 220/240v. A.C. operation.
Complete with probe and
Inatructions Instructions $817 / 10 / 0$. P.
 42/6. COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
 AM/FM SIGNAL GENERATORS

Onclllator
No. ${ }_{2}$ Test
A high No. ${ }^{2}$ A hish
quallty precislon
indrument made lnotrument made
for the Ministry by Airmec. Froquency coverage
$20.80 \mathrm{Mc/a}$ AM/
$\mathrm{CW} / \mathrm{FM}$. Incor-
porate: precinlon dial, level meter. precuinon attenuator $1 \mu \mathrm{~V}-100 \mathrm{Mv}$.
Operation from 12 volt D.C. or $0 / 110 / 200 / 250 \mathrm{v}$. A.C. $81 z e 12 \geq 81 \geq 9 \mathrm{in}$. Supplied in brand new condition complete with all connectora, tully
tested. \&45. Carr. 201.

GEARED MAINS MOTOR
Paralux type RDI9
$22: 10 / 2501$ A. AC. Rever
 Complith with cappat
ixicellent condition. Fixcellemt condition.
g9/6. Carr. $10 /$.
TE-ISA TRANSISTORISED
SIGNAL GENERATOR

5 Ranges $400 \mathrm{KHZ}-30$
MHZ. An inezpensivo instrument for the handy
man. Operatea on 9 v man. Operaten on 9 y .
hiltery. Wide easy to read scale. 800 KHZ modulation. $51^{\circ} \times 51^{\circ}$
$\times 3 t^{-}$Complete $x 3 t^{-}$. Complete with
inatructiona and leads. £7/18/6. P/P 4/-. TRANSISTORISED L.C.R. A.C MEASURING
BRIOGE.
 2% C. $110 \mathrm{PF} \pm$
110 MPD .6 Range
mor
\pm Ra\%. TURNS RATIO I:1/1000-1:11100. Operated $\pm 1 \%$. Bridge voltage at 1,000 CPB. Atractive 2 tome n
£20. P. \& P: $\mathrm{B} /$.

AUTO TRANSFORMERS
$0 / 113 / 230 \mathrm{v}$, Btep up or step down. Fully nhrouded 150 W
300 W
500 W

300 W.
$\mathbf{1 , 0 0 0} \mathbf{W}$.

$1,000 \mathrm{~W}$.
1.500 W.
500 W. £7/1016, P. \& \& P. $7 / 6$

G. W. SMITH
 \& Co. (Radio) Ltd.
 also see opposite page

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value. ELECTROLYY CAPACITORS

RESISTORS. EXCELLENT QUALITY. MAINLY.5\%. 7/6d. per 100 of any one value.
RESISTORS. EXCELLENT QUALITY. MAINLY 5%

2/- per dozen of any one

10 k ohm
16 k ohm
18 k ohm
22 k ohm
24 k ohm
27 k ohm
30 k ohm
39 k ohm
43 k ohm
47 kohm
51 kohm
62 k ohm
75 kohm
82 k ohm

91 k ohm 130 k ohm
1.2 meg ohm
8.2 meg ohm $\begin{array}{ll}13 \text { ohms } & 560 \text { ohms } \\ & 3.3 \mathrm{k} \mathrm{ohm}\end{array}$
$\begin{array}{ll}22 \text { ohms } & 750 \text { ohms }\end{array}$
91 ohms $\quad 1.5 \mathrm{k} \mathrm{ohm}$
or our selection (mixed) 6/6d. per 100 .

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS. $10 /-$ per 100 of any one value. $3 /$ per dozen of any one value. Smaller quantities $6 d$. each. A available. In following values. Tick those required.

2 pf	pf	12 pf	25 pf	50 pf	80 pf	135 pf	180 pf	250 pf	$680 . \mathrm{pf}$	1,000 pf	2,500 pf
2 pf	5 pf	12 pf	27 pf	58 pf	82 pf	140 pf	190 pf	330 pf	800 pf	1,100 pf	2,700 pf
4 pf	8 pf	18 pf	30 pf	62 pf	100 pf	158 pf	200 pf	450 pf	820 900	1,200 pf	6,200 pf
4.7 pf	10 pf	22 pf	39 pf	72 pf	125 pf	170 pf	240 pi	600 pr			

COMPARE THESE PRICES!!

MULLARD POIYESTER CONDENSERS No. Price

$1,000 \mathrm{pf}$	3d. each	400 V
$1,500 \mathrm{pf}$	3d. each	
$1,800 \mathrm{pf}$	3d. each	
$2,200 \mathrm{pf}$	3d. each	
.15 uf	6d. each	160 V
.22 uf	6d. each	160 V
.27 uf	6d. each	160 V
1 uf	1/ each	125 V

25% discount lots of 100 per type.
TRANSISTOR P.N.P. Atior Untested, unmarked. MAINLY O.K. .. 10/-per 100 N.P.N. Silicon. R.F. types unmarked ALL USEABLE . . $/ /$ - $10 /-$ per 50 POWER OUTPUI SILICON PLANAR TRANSISTORS. ALL TESIED. NO LEAKS OR

SHORTS. Gain of $20 / 506 \mathrm{~d}$. each, $50 / 100$ 9d. each, $100 / 200 \mathrm{l} /$ - each.
LIGHT SENSITIVE TRANSISTORS, $2 /$ - each.
LIGHT SENSITIVE DIODES
Can be used to control any transistorised device, $1 /-$ each.
$75 /$ - per 100: $£ 25$ per 1,000
THYRISTORS. 400 volt BTY $797 / 6 \mathrm{~d}$. each. SCR 51 (10 amp) $£ 1$ each. RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current type 1N4006. 2/6 each 24/- BYZ 13 or $19(6 \mathrm{amp})$ 2/6 each, 24/-dozen 2/6 each, 24/- dozen, $87 / 10 /$ -£7/10/-100
BY $1272 / 6 \mathrm{~d}$. each. $24 /-$ dozen. $£ 7 / 10 /-$ per 100 . 550 per 1,000 . QUALITY!
55° Standard

Oddends' Minimum $150 \quad$ 2/3d. 1 Long-play
MAINS DROPPER TYPE RESISTORS. Hundreds of types from .7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Muiti-tapped droppers for radio/television. Owing to the huge variety these can only b offered "assorted". 10/- per dozen.
GIANT SELENIUM SOLAR CELLLS. Last few to clear at half price Circular, 67 mm . diameter $5 /-$ each. $50 \mathrm{~mm} . \times 37 \mathrm{~mm} 3$ for $10 /-$

SKELETON PRESETS. Mixed. 6/- dozen.
VOLUME CONTROLS. $\frac{1}{\frac{1}{m}} \mathrm{meg} .1 \mathrm{meg}$. with D.P. switch 5 k . (No switch) all 2!RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened input lead, volume control and speaker leads. This excellent unit also has bunt rectifer and smis Small number only! Cannot be repeated at this price! 30/- ea.
9 RSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivityl Complete with earpiece, battery and plastic carrying case, all packed in a colourful presentation box. You would expect to pay $£ 5$-but our price due to huge purchase is only $37 / 6 \mathrm{~d}$.! CO-AXIAL CABLE. Semi-air spaced. 8 d . yard. 60 yd . rolls $30 /-$ Postage $4 / 6 \mathrm{~d}$. CRYSTAL TAPE-RECORDER MIKES, 12/- each. CRYSTAL EARPIECES WITH PLUG, $5 /-$ each, Magnetic earpieces. No plug. 1/6d. each.
THIN CONNECTING WIRE, 10 yds $1 /-, 100$ yds $7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds} .50 / \mathrm{m}$. RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) GP94/1 30/- (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/- (Stereo) ACOS GP94/1 with diamond needle 37/6d.
TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt $12^{\prime \prime}$ tube, Reflector type $59 / 6 \quad 15$ watt $18^{\prime \prime}$ tube, Batten type \quad 79/6 Complete with tube. Postage $3 /-$

TRANSISTORISED SIGNAL. INJECTOR KIT 10/-
$\begin{array}{lllll}\text { TRANSISTORISED SIGNAL TRACER KIT } & \cdots & \cdots & \cdots & 10 /= \\ \text { TRANSISTORISED REV. COUNTER KIT (CAR) } & \cdots & \cdots & 10 /-\end{array}$

$17 \times 2 \frac{10}{2} \times .15$. $7 / 6 \mathrm{~d}$. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36. Spot Facc Cutter and $52 \frac{1}{2}^{\prime \prime} \times 1^{\prime \prime}$ boards 9/9d.

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum 2^{\prime}-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

23kW FAN HEATER
Three position switching to sult for full heater (2 k kW), , witch down for half heat (14 kW). : witch central blown cold lor summer coolingChermostat acts as muto cut-out. 76, or simpiar $2 f$ KW muie up heate

FLUORESCENT CONTROL KITS Each kit comprises neven Itema-Choke, 2 tube ends, starter, starter holder nad 2 tube clips, with wirng Instructions. Snitable for normabe fluoreacent whbes of the new "Grolux" tubestor Choker are super-milent. forstly reath filled. Kit A- $15-20$. onder kit ondered. Kit MFI $3 / 6$ on first kit then $3 / 6$ on eat each two kith ordered

BLANKET SWITCH Double pole with neon let Into side so luminous waterproot element rooru light or for use wit each. 3 heat model \%/B.

BLANKET SIMMERSTAT

Although looking like, and titted as, an ordinary blanket awitch, this is in fact a device for awitching the blanket on for warying timpe perfocis, thuk giving a
complete control from of Lo full heat. Also suitable for complete control from on wo full heat. Also auilable for uning up to 1 amp. Listed at $2 f / 6$ ench, we offer
these while our ntocks last at only $12 / 6$ each.

REED SWITCHES

Glasn encaned, writches nperited by external magnet-gold velded contacts. We cesn now offer 3 types: Minature. Ila. long x approximntely thin. dlameter. Will make and break up to ti up to 300 volta. Price $2 / 6$ each Standard. 21 n . long $\times 3 / 161 \mathrm{~m}$. dlameter. Thie will break currents of up to 1 A , voltagea up to 250 volts. I'rice $2 /$ ench.
 It can be fitted into a amaller apace or a marger quantity thay
 Price $6 /$ - each. $£ 3$ per dozen.
Bmanall ceramle magnets to
HIGH CAPACITY ELECTROLYTICS

$10,000 \mathrm{mid} .6 \mathrm{FP} .5 / 8$ each $£ 3.0 .0 \mathrm{doz}$.
10,000 mid. $15 \mathrm{v} .48 / 8$ each $£ 4.10 .0$ doz
15,000 mfd. $10 \mathrm{v} .10 / 6$ each 55.0 doz
$60,000 \mathrm{mfl} .8 \mathrm{vin}, 12 /-$ each 210.0 .0 don.
$70,000 \mathrm{~m} / \mathrm{d} .13 \mathrm{v} ., 40 /=$ each $£ 20.0 .0$ do
TELESCOPIC
For portable, car radio or six mections ertende from $7+24$ to 47 in . TOGGLE SWITCH
3 amp 250v. with SWixit ring.
ashap $15 /-$ doz.
80 OHM BALANCED
ARMATURE EAR PIECE
Ussule as microphone or loudspeaker. $4 / 6$ each
MINIATURE EAR PIECE
An used with imported pocket radios. $1 / 6$ each 15/- doz
ISOLATION SWITCH
20 Amp D.P. 280 Volts. Ideal to contm
Indicator show when current is on, $4 / 6$
Screened 2 Core Flax. Fach oore 14/0076 Copper PVC
$\begin{aligned} & \text { insulated and coloured, the } 3 \text { cores laid together and meta } \\ & \text { braided overall. Price } £ 3.15 .0 \text { per } 100 \text { ylh. coil }\end{aligned}$
$\begin{aligned} & \text { braided overall. Price } £ 3.15 .0 \text { per } 100 \text { yith. coil } \\ & 15 \mathrm{~A} 3 \text { Core Non-kink Fiex. } 70 / 0076 \text { insulated coloured }\end{aligned}$
$\begin{aligned} & \text { cores. protected by tough rubber sheath, then black cotton } \\ & \text { braided with white tracer. A normal dorneatic dex as fitted }\end{aligned}$
$\begin{aligned} & \text { braided with white tracer. A normal domeatic lex as fitted } \\ & \text { to } 3 \mathrm{~kW} \text { fires. Regular price } 3 / 6 \text { per yd. } 50 \text { yd. coll } \mathrm{A} 4 \text {, or }\end{aligned}$
Copper. Normal price $2 / 6$ per yd. 100 yd. coll 26.10 .0
or cut to your length $1 / 9$ yd. 2 cores each 23/0076 as used
(antryphor 15/20 AMP CONNECTORS
$\begin{aligned} & \text { Polytbene inmulated } 12 \text {-way etrip. } \\ & 8 / 6 \text { each } 24 /=\text { doz. }\end{aligned}$

13 AMP FUSED SWITCH

hade by G.E.C. For connecting water heater etc., Into 13 amp ring main. Flush urface mounting $1 / 6$ each $15 /-$ doz.
MICRO SWITCH

275w. Internally mirmared bub, with b.o. end for plugging TUBULAR HEAT \& LIGHT LAMP 750 MICRO AMP MOVING COIL METER 24 in . Hush mounting, ex-W.D. 10/6 each plua $3 / 6$ poat and

ERGOTROL UNITS
These unita made by the Mullard Group are for ment from A.C. dains.
ThyHistors men used
Thytistorsare nised and these supply a variable deticiency far superior to most other methods. The unlto are cottalned in wall mouritin cabinets with rront control panel on which are thyristor fring control. 4 models ar
makers cases:
 Model 2413 for up to 45 amps $\mathbf{~} 47.10 .0$ Model 2415 for up to 80 anps fing

MINIATURE EXTRACTOR FAN

Beautifully trade by famous German Company. PAPST Byatem, ment conilng but ideal to incorporate ln an, cooker hoode etc. $65 /-$

HORSTMANN 'TIME \& SET' SWITCH

 (A 30 Armp gwitch). Just the thing if you wapt to come horne to a witch on time of your electric tlren etc., ap to 14 hour from netting time or you can use the swlich to give a boost on period of up to 3 hours. Equally suitable to control processing. Regular price probably around 55 . Bpecial snlp price 29/6. Pust andina. $4 / 6$.

DISTRIBUTION PANELS

Juat what you need, for work bench or lab. $4 \times 13 \mathrm{mmp}$
pluge. Supplied complete Fith 6 feet of heavy cable and 13 mmp plug. Blmilar panela sodvertised at L 5 . Our price: Kit of parts $38 / 6$. plus $3 / 6$ post and Insurance. Made up $45 /-$ plus

No, of Poles	Standard size 1t wafer-ailver-plated 5 -mmp contact, etandard i^{*} spindle 2^{*} long - with locking wabher and nut.							
	2 way	3 way	4 way	5 way	6 way	8 way	10 way	12 way
1 pole	A/6	B/6	6/6	6/6	8/6	8/6	6/6	6.6
2 poles	8/6	8/6	6/6	6/6	8/6	8/6	10/6	10/6
3 polen	8/6	$6 / 8$	8/6	6.6	10/6	10/6	14/6	146
4 poles	6/6	6/6	8/6	$10 / 6$	10/6	10/6	18/6	18/6
${ }_{5} 5$ pote	6/8	6/6	10/6	$10 / 6$	14/6	$14 / 6$	$22 / 6$	22/6
6 poles	8/6	10/6	$10 / 6$	$10 / 6$	14/6	$14 / 6$	26/6	2818
7 polen	6/6	10/6	10/6	$14 / 6$	$18 / 6$	1816	$30 / 6$	30/6
8 poles	10/6	$10 / 6$	10/6	$14 / 6$	1816	$18 / 6$	34/6	$34 / 6$
${ }^{9}$ poles	$10 / 6$	$10 / 6$	$14 / 6$	$14 / 6$	$22 / 6$	22/6	38/6	$38 / 6$
10 poles	$10 / 6$	$10 / 6$	148	$18 / 8$	$22 / 6$	22/6	48/6	42/6
11 poles	$10 / 6$	14/6	$14 / 8$	18/6	26.6	28/6	$48 / 6$	$48 / 8$
12 poles	$10 / 6$	14/6	14/6	18/6	26/6	26/6	50/6	$50 / 6$

24 HOUR TIME SWITCH

Maina operated. Adjuntable Contacta give on/off per 24 hours. Conlacta rated 20 ampa, repeating mechanimm mo lideal for ahop window cone on hollday. Madle by the famous smitha Company. This month only $30 / 6$ complete with perspex cover, new and unused, plus $3 / 6$
postage and insurace. $\&$ real snip which should not be missed.

DOUBLE ENDED MAINS MOTOR

On feet with holes tor screw-down firing. To drlve models. oven, blower beater, etc. 10/-cach, plua $3 / 6$ post and inaurauce.

DIAMOND H OVEN THERMOSTAT

Type 20 TH with caplliary tube and sentor, 20 amp A.C. type
an fitted to many cookers adjustable by control knob (not As fitted to many

VARYLITE

Will dim Incandeacent lighting up to 600 watt from full hriltiance to out Fitted on M.K. flusli plate, same nize and fixing as grandard wall suitch so may be itted in place of this. or mount
plaxtle bor with control knob $£ 3.18 .6$.

HI FI BARGAIN

FULL F1 12 INCE LOUDSPEAKER. This if undoubledly one of the finest ioudapeakers thit we have ever offered, producet by one of the country's moat famous makern. It has a die-cast metal frame public addreas. 11,000 gause-Total Flux 44,000 Maxwella-Power Handling 15 wats R.M.8.-Cone Moulded Abre- Freq. reaponse

 $7 / 6 \mathrm{p}$. \& p . Don't nins this offer. 1 in .50 watt $\mathrm{£z} .19 .6$.

3kW TANGENTIAL HEATER UNIT

Thin henter unit Is the very latest type, most efticlent, and quiet rinning. Is as fitted in Hoover and olower heaters costing Cl 5 and more. Wie have a few
only. Comprises motor, impeller, 2 kW . element and 1 w . element allowing awlebing 1,2 and 3 kW .
and with thermal safety cut-out. Can be fited and with thermal safety cut-out. Can be fitied
Into any metal line case or cabinet. Only need control
switch. $78 / 6$. Postage and lasurance $6 / 6$. Don witch. 78/6. Postage and Insurance $6 / 6$. Don't
mise this.

MINIATURE WAFER SWITCHES

2 pole, 2 way- 4 pole, 2 way- 3 pole, 3 way4 pole, 3 wny- 2 pole, 4 way - 3 pole, 4 way2 pmle, 6 way- 1 pole, 12 way. Als at $3 / 6$ each, $36 /$ dozen, your asow rument.

WATERPROOF HEATINO
ELEMENT
26 yaride length 70W. Sel-regulating
temperature control. $10 /-$ pont frec.

INSTRUMENT MOTORS WITH GEARBOX Male by farnout smithx Company, Very
powerful, slthough only quike smath, Overyil
dimensions approx. 1 ita, deep by 2tm. dia. Follewing trodels s.vailabite, pleame npecity required apeed
Reva, per day 2-8-12
Reva. per hour 1, 2, 4, $6,12,20,30$,
Revs, per hour 1, $2,4,6,12,20,30$,
Reva. per minute 1, $2,4,8,15,30,60,17 / 6$ each.

ELECTRIC CLOCK WITH 25 AMP SWITCH
Male by Bmith's. these unith are a Attentrol the oven. The clock to main driven and frequency controlled so it
is extremely accurate. The two stuall dials ebable swith on and off times to
 THERMAL CUTOUT
A miniatnre device tin. dis. on one serew Axlng mountcan be unect for motor ovarhoud protection-flre alarmowith flanue radiant or conducted leat. 1/6 each. 15/-
doz. $\mathbf{5} 5100$. doz. £5 100
COPPER CLAD ELEMENT
1250 watte-4ft. long but bent to \mathbb{C} shape, ldeal for over$4 / 6$ post. $£ 6$ doz. post pald.

CONDENSER

Proved thesign. Ideal

AC FAN

Amall but very powertul
mains motor with si in. blades. Ideal for cooling equipment or an extractor. Stlent but very effecient. 17/6. pont $4 / 6$ Mouris from back or fromt with 4 BA ecrews.

MAINS TRANSISTOR POWER PACK

 able output 6v., 9v.. 12 volts for up to soonA (class B
working). Takes the place of any of the following batteries: worling. Taker he place of any ot the followink batheries:
PPI, PP3, PP4, PP6, PP7, PP9, and others. Kit comprinea : mains tranaformer rectiter, nmoothing and lowd resintor.

PP3 BATTERY ELIMINATOR
Run your amall transintor radio from

85 Watt Tubular Element. Very well made unit. The element is wound on a porcelain former then encased is a brisw tube termulated with beaded leals 12 im . long. Normal
thains Foltage. Price $5 /-$ each or $54 /-$ per dos.

250V AO working condensers for power factor correction,
motor ntaring elc. 3.5 mid. $8 / 6$ eat, 6.5 mid. $8 / 6$ ea.,
8 metd. $9 / 6$ er.
3 minp battery eharger kit eomprisen copper backed circuit bard. 3 amp malis transformer. regulator reasintors amd 4/6.

Dynamie microphone 500 uhm, operaten speaker or milcro-

phone, so useful in intercom or minnlar circults. $8 / 6$ ea., | phone, |
| :--- |
| 80 |
| 10.0 doz. |

Acos erystal microphone. Adjustable atand converta this
HEAVY DUTY POWER PACK

ith normal primary, ecreen $20-1)-20$ G-ump out put. Pully | moothed. Completely wired ready to work $£ 3 \cdot 19.6+8 / 6$ |
| :--- |

RADIO \& TV COMPONENTS (Acton) LTD 21 a High Street, Acton, London, W. 3.
 also 323 Edgware Road, London, W 2.

Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

Complete stereo system-£29 10s.

The new Duo general-purpose 2-way speaker system is beautifully finished ir polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Type 1 SPECIFICATION
Impedance 10 ohms It incorporates Goodmans high flux $6^{\circ} \cdot 4^{\prime \prime}$ speaker

bass unit and $2 \frac{1}{4}$ " tweeter. 3 ohms impedance $5 \frac{1}{2}$ guineas plus
15/-p. \& p.
Garrard Changers foom £7.19.6d. p. \& p. 7/6d.
Covar and Teak fin sh Plinth E4.15.0d. 7/6d. p. \& p.
Orede Integrated Transistor Stereo Amplifier
£9 10s

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costirg far more.
SPECIFICATION
R.M.S.power output: 3 watts per channel into 10 ohms speakers

INPUT SENSITIVTY: Suitable for medium or high ouiput crysial cartridges and iuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4 - position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL. Treble lift and cut. Separate on off swith. A preset
balance control.
 teak finisheo case E9 Built and of p. Builh and tested.

specification

Sensitivias for 10 watr outpue at 1 KHz Into 3 ohms. Tape Head: 3 mV (at 34 i.p.s.). Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Tumer: 100 mV . Aur. 20 mV . Tapâhec. Uuput: Equabisation for each

OUTPUT: 10 watts per channel into 3 to 4 ohms speakers (20 watts) monoral.
INPUT: 6 -position rotary selactor switch (3 pos. mono and 3 pos. stereo). P.U. Tuner, Tape and Tape Rec. out Sensitivities: All Inputs 100 mV into 1.8 M ohm.
FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{DB}$.
TONE CONTROLS: Separate bass and treble controls. TREBLE 13 dB lift and cur (at 15 KHz) BASS: 15 dB lift and 25 dB cut lat 50 Hz).
VOLUME CONTROLS: Separate for each channel. AC MAINS INPUT: $200-240 \mathrm{v}, 50.60 \mathrm{~Hz}$ Viscount Mark II for use with magnetic pick ups specitication as above. Fully equalised for Impedance 47k. E15 15s. plus 7/6p. \&

OUTPUT: 10 watts into a 3 ohms speaker. 2) for gram. radio $(250$ m.v.) indivdual bass and treble control. TRANSISTORS: 4 silicone and three germanium.

THE RELIANT MK,II
Solid State
General Puppose Amplifier
In teak-finished case
f6 16s.
$+7 / 6$ p. \& p.

MAINS INPUT: 220/250 volis SIZE: $10 t^{\prime \prime} \times 44^{\prime \prime} \times 21^{\prime \prime}$
MIKE TO SUIT (CRYSTALI: $12 / \mathrm{Bd}$. $1 / 6 \mathrm{~d}$. p. \& p.

Mk. $15515 \mathrm{~s} .+7 / 6 \mathrm{~d}$ p. \& p. less Teak-finished case

THE DORSET

(600 mW Output)
f5.5.0
plus $7 / 6$ p. \& p.
Cliccuit $2 / 6$. FREE WITH PARTS MAINS POWER PACK KIT:
9/6 extre.

7-trans
with bad with baby alarm facility. Set of parts. The latest modulized pnd pre-alignment
Sizes: $12 \times 8^{\prime \prime} \times 3^{\prime \prime}$.

NEW COMPLETE HI-FI STEREO SYSTEM

£ 39comprising SP25 Garrard MkII with diamond stere carriage, Viscount amplifier Mkl. Two type
speakers, plinth and cover. £ 39 plus $£ 2 \mathrm{p}$ \& p

T-transietor fully tunsble M.W.-L.W. auperhat portable Set of parts. Complete with all components. Including ready atched and drilled printed circuit board-back printed for foolproof construction.

STEREO PRE-AMPLIFIER

Inputs 6 pasition rolary switch 13 postion movis. 3 postiun stereal. Juner 150 my into 680k Magnetic pick-up fully equalised and suitable for magnetic carnnoges with minimising output of $4 \mathrm{mV} / \mathrm{crvisec}$ Losd 47 Ch Ceramic pickup volume controis for each channel Twin ganged bass. 12 dB lint and 15 dB cut at

 from panel and knobs Built and lasted $\mathbf{f} 7.7 .0$ plus $\mathrm{S} \cdot \mathrm{p}$ \& F .

X101 10w. SOLID-STATE HI-FI AMP With Integral Preamp.
Specilications: Power Output (immo 3 ohms speaterl 10 wathe Sensitwity flor rated eutpot): ImV into 3 K ohms 10.33 microampl Taral Distertion (an I Khal: At 5 watts 0.35\% A1 rated ourpur i.ak Frequenc Response: Minus 3 dB poims 20 Hz and 40 KHZ Speaker: $3-4$ ohms. (3-15 ohms may be used).
voliage: $24 \mathrm{~V} O \mathrm{C}$ at $800 \mathrm{~mA}(6-24 \mathrm{v}$ may be used).

69/6 pius 2/6.8.
COWTROL ASSEMBIY: linctuding resistors and capacitors). 1. Volume: Price 5 St, 2. Freble: Price 5/. 3. Comprehensive bass and treble: Prict 10/. The above 3

50 WATT AMPLIFIER

An extremely rellable general purpose valve Amplifierwith six electronically mixed inputs. Suitable for use with: mics. guitars. gram. tuner, organ. Efc. Separate bass anc

SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 speed auto

 player with stereo head 2 DUO speaker systems size $12 \times 6 \neq \mathrm{f}$54. Plinth (less cover) and the DUETOO siareo amplifier. 51. Plinth lles
All above items

All above items
$\mathbf{f 2 0}$ plus 20/-p.8p.

(Burndepi B.E.352) 60 watt model. Supplied Brand New complete with E60. Carr. 20/-
2. FAST NEUTRON MONITORS (Burndept 1407C) for measuring neutrons in the energy range 0.15-15 meV . $£ 100$.
3. Radlation Monitors (Burndept BN 110 MK. V) $0-5 / 50 / 500 / 5 \mathrm{k}$. c.p.s. Brand new. E100. Alpha and
PORTABLE RADIATION MONITORS (BuTndept BN 132) $0-5 / 50 / 500 / 5 k$ c.p.s. With built-in carrying harness.
S.A.E. for literature. 10\% discount fo

Educational Authorities

SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{in}$.) Made to spec. from $\frac{z}{4}$ In, board. Finished in black leathercloth. $13 \times 8 \mathrm{im}$. $50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{c}$. $£ 7.10$. P.P. 10 /
SPEAKER CABINET KIT. Above mentioned cabinet only In kit form which you m
SPEAKER BARGAINS. E.M.I. 13×8 in. with double Tweeters $15 \mathrm{ohm} .65 /$. , P.P. $5 /=$. As above less tweeters

EXTRACTOR/BLOWER

 FANS (Papst)100 c.f.m. $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in 2800 r.p.m. Wonderful buy at 50/- ea. 240 v . A.C

high speed magnetic COUNTERS ($4 \times 1 \times 1$ in. $) 4$ digh 612V. P. 24/48v, (slate which). 6/6

(sta

PYE OHMMETER TYPE 10B, 500v

 20 k . meg. ohm. 200/250v, A.C. Bland new instrument $\mathbf{E} 30$. P.P $30 /$ -РОT CORES TYPE LA 3. 10/- өa
11 Way plug \& SOCKET (Painton Series 159) Gold plated contacts with hood \& retalning clips. 30/- pair. 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated
contacts $20 /-$ palt. 34 way version $15 /-$ paif. VALVE MILLIVOLTMETER (Marconi TF899) 0-2v. LOGIC BOARDS with 31 ACY40s- 38 diodes etc 20/- ea. CO-AX RELAYS (magnetic devices) 1 change-over 12 v.w CO-A ELECTRONIC ORGANBUILDERS. We Now have in stock complete 40 octave divider ($4 \frac{1}{3} \times 33 \mathrm{in}$.). All connection data
coll supplif
E16.
DIODE LOGIC BOARDS contains 10 diode gating circuits which convert any one
binary code, 10/-each.

TRANSFORMERS

E.H.T. TRANSFORMER $2100-0-2100 \mathrm{~V} .40 \mathrm{~m} / \mathrm{a} .75$

E.H.T. TRANSFORMER (Parmeko 'Neptune') 3.000 V 280 m.a. $£ 12 / 10 / 0$. P.P. $50 /-$
amp. E5. P.P. 15/-:
L.T. TRANSFORMER 20 V .1 .5 amp . $15 /-\mathrm{F}$ P.P. $2 / 6$.
L.T. TRANSFORMERS PIIm. $200 / 5$. L. T. TRANSFORMER Prim. 200/250v. Sec. O/25/35v 30 amp. E7.10. P.P. $20 /$-.
STEP.DOWN TRANSFORMERS PIIM. 200/250v. Sec 115v. 1.25 amps, $25 /-$ ea. P.P. $5 /$ L. 5 amp models $20 / \% 5 \mathrm{amp}$ mo 240 v . Sec. $8 / 12 / 20 / 25 \mathrm{v}$, L.T. TRANSFORMERS PIIm. 240 25/-. P.P. 5/6. ELECTRIC SLO
85/- ©A. P.P. $5 /-$
QUARTERLY

COPPER LAMINATE PRINTEO CIRCUIT BOARD $\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{1}\right.$ in. $), 2 / 6$ sheot, 5 for
Also 11×9 in. $4 / \cdot$ ea., 3 for $10 /$.

BULK COMPONENT OFFERS

100 Capacitors (latast tvoes) 50 DF to $.5 \mu \mathrm{~F}$
250 Resistors i and $\frac{1}{2}$ watt
250 Resistors
10 and
1
250 Resisiols a and watt.
150 Hi -Stab Resistors. 1. .

12 Precision Resistors $.1 \%$ (several standards Included).
12 Precision Capacitors 1 and 2% (several standards included).
12 Electroivtics (miniature and standard sizes).
ANY ITEM 12/6. ANY 5 ITEMS 50/

TELEPHONE DIALS (New) 20/- ea

 RELAYS (G.P.O. '3000'). All types. Brand EXTENSION TELEPHONE (Type 706) Black or 2 tone Grev. 65/-. P.P. 5/-.UNISELECTORS (Brand now) 25 -way 75 ohm .8
i wipe $75 /$.
 SUB-MINIATURE REED RELAYS ($1 \mathrm{in} \cdot \mathrm{x}$ din!). Weight 4. oz. Type 1.960 ohm, $3 / 9 \mathrm{gv}$. 1 make. 12/6 ea. Type 2 . 1220pt. E10 ea. TYpe 2. 9.5pf-11.5pl. \&6 ea. STC CRYSTAL LOCKED OSCILLATOR (Synthesiser). Precision crystal oven. Locks oscillator at each $100 \mathrm{~K} / \mathrm{c}$. Separate locked oscillator from $0-100 \mathrm{~K} / \mathrm{c}$. £150 in excellent

CYLINDRICAL FANS (Solartion). Overall size $16 \times 5 \frac{2}{x} \times$
$3 \frac{1}{\frac{1}{2}}$ in., ald outlet $12 \times 1 \frac{1}{2}$ in 240 v A.C. $50 /-$ each. P.P. $7 / 6$ (New).

LEVEL METERS (19
PHOTOMULTIPLIERS 6262 and 6262 b . $\mathbf{£ 1 5}$ ea.
RELAYS H.D. 2 pole 3 way 10 amp. contacts. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea.
LIGHTWEIGHT RELAYS (with dust-prool covers)

Valves

$6 \mathrm{~K} 8 \mathrm{GT} 7 / 3$ $\begin{array}{ll}6 \mathrm{~K} 8 \mathrm{GT} & 7 / 3 \\ 6 \mathrm{~K} 25 \mathrm{G} & 14 / \\ 6 \mathrm{LK} & 14 / 6 \\ 6 \mathrm{LEGA} & 9 / 6\end{array}$ | $6 \mathrm{CP25}$ |
| :--- |
| 68 F |

 $68870 T$
$6870 T$
$8 / 6$ $68 \mathrm{C} / 7$
68 J 7 $\begin{array}{ll}3 J 7 & 8 /- \\ 8 J 70 T & 8 / 6\end{array}$ $\begin{array}{lll} \\ & \\ J 77 \mathrm{Y} & 8 / 6 \\ 8 / 6\end{array}$ $\begin{array}{ll}68 \mathrm{~K} \\ \text { 6870T } & \text { 8/6 }\end{array}$ 68N70T $6 /-$
 $\begin{array}{ll}6 \times 807 & 8 / 3 \\ 6 \times 4 & 4 / 9 \\ 0 \times 5 \% & 8 /\end{array}$ $6 \times 50 T$
6760

MARCONI TEST EQUIPMENT VALVE
VOLTMETER
TYPE TF 958 .
Measures AC 100 mV ;
$20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$,
DC 50 mV to 100 V ,
mulsiplier extends ac
range to 1.5 kV ,
Balanced input and
centre-zero scale for
DC. AC up to
100 MHz E 32.10 .0.

DISTORTION FACTOR METER TYPE TF 142E. Frequency range: range: 0.05 to 50%. Input impedance 600 a. attenuation 0.60 db continuously variable. Sensitivity 1 mW . $\mathbf{£ 4 2 . 1 0 . 0}$

TF 899 VALVE VOLTMETER, 10 mV F.M. DEVIATION METER TF 934, Es7.10.0. Carriage 30
VIDEO OSCILLATOR TF 885 a \& 885 A/I. 655 and $£ 85$ resp. Carr. $30 /$ FM DEVIATION METER TYPE TF 791 B . Frequency range: 4250 MHz , deviation $1-75 \mathrm{kHz}$. Specification and price on application.

LIMITED QUANTITY ONLY SIGNAL GENERATOR TYPE TF 937 (CT 218). Frequency range:-3S 2MHz Buile-in Cryscal calibrator Sinewave A.M. V.F.M. Oue PULSE GEI EA5. Carriage $30 /$ 675 F . Repetition frequency: 50 Hz to 50 kHz . Pulse duration: 0.15 to 1000 sec; buile in 0.1 and $0.5 \mu \mathrm{sec}$ delay lines. $\mathbf{f 4 0 . 1 0 . 0}$. Carriage 20
CIRCUIT MAGNIFICATION METER TYPE TF 329F. Frequency 10 to 5000 . 50 MHz . Magnification 10 to 500 Q. Tuning Capacitor: 40 to hauled and calibrated, $£ 70$. Carriage $30 /$ -

SOLARTRON EQUIPMENT
 FOR EXPORT ONLLY
 ${ }^{53}$ TRANSMITTERS. All spares

 installations and spare parts. 62 WIRELESS SETS. Spare parts. 62 stallations and sare parts. P.S.U. TRANSMITTERS ET 4336. Com. plete installations and all spares.BC $610 E$ \& I TRANSMITTERS. Complete installations and all pares. No. H WIRELESS SETS. H.P. SETS and all spares R. 210 RECEIVERS
access PTC $2002 N ~ A . M . ~ R a n g e r ~$ Mobile Radio Telephone, brand new and complete, \&4S.

AVO VALVE CHARACTERISTIC METER complete with manual. ransit case C45. Carriage 30\%.
DAWE STORAGE OSCILLO-
SCOPE complete wtih trace shifter, complete as new, specification and
rice on reque
SPARES FOR AR.88D. RECEIVERS.

elecrion.

HARNESS "A" \& "B" control units,
unction boxes, headphones, micro phones. etc.
24 V guaranteed perfect. 43.15 .6 64.10 .0 guaranteed $\mathbf{2 6 . 1 7 . 6 \text { respectively. }}$

GAUMONT KALEE (RANK STUDIO) MODEL 1740 WOW \& FLUTTER ENGLISH ELECTRON
ENGLISH ELECTRONIC INSULATION TESTERS 0-IOKV with buils AIRMEC INSULATION TESTER O-5KV buile-in ionisation amplifier, $\mathbf{E 2 8}$. BOONTON SIGNAL GENERATOR TS 497/B/URR, $2-400 \mathrm{MHz} .695$ TS 418 B/U SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. \&105. Carr. 30\%.
 o view TEST EQUIPMENT please phone for appoinemens

```
NTEGRATED CIRCUITS MANY OTTHERS IN STOCK
```

RCACA 3005 wide band RF Ampl 300 mW diss.. 27/- PLEASE NOTE
CA 3012 wide band ampl 150 mW diss
22/- PLEASE NOTE
CA 3020 Audio power ampl
CA 3036 Audio prewermp
STC MIC 9301 B Digital dual 4 imput gates
MIC 709-1C Linear operational amp!
MIC 90050 Highspeed flip-flop

tes. ...

es.....$191-$$86 /-$
$1901-$ seen" all equipment ordered from us is completely overhauled mechanically and electrically, chus ensuring that our equipment is in "conne
and use" condition. A.F. Amps with PRE-AMP 2.5W. ©2.2.6. 3.5 W .
E2.12.6. Mono with tone controls E6.2.6. Stereo with

TRANSISTORS, ZENER DIODES

 \qquad -

 CRS3/30 CRs25/025 CRS3/40 ${ }^{16 /}$ OET103
GETII
$9 /-$

 Z2A range
$7 / 8$ en.
ZaB range
sperial Valmes. U.K. P. "P. up to 10$\rangle-1 /-$ to $\& 12 /-$; over
Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

LAB. AMP AWS 151 A, Frequency: 15 Hz to 350 kHz . Metered ourpur. scope
age 20
age 20
Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V CD 7ils 2 OC 7 MHz 'scope, e85. Carriage $30 /$.. CD 643.2. Single beam Laboratory Model, DC to 14 MHz price upon QD 910. Storage Oscilloscope, as new. Price on request.

29/41FT. AERIALS each consistin ten 3/2. fin. dia. eubular screw-in sections. (life. (6-section) whip aerial with adaptor to fit the 7 in . rod. insupegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect. FIELD TELEPHONE TYPE "'F" Housed in portable wooden cases. Excellent for communication in and out doors for up to 10 miles. Palr including batteries, fully tested $26.10,0$, or
220 yds field cable in drum $\mathbf{6 7 . 1 0 . 0}$. END OF RANGE ITEMS in as seen condition: H.R.O.- 610 ; Coils at $15 /-$; G20; Furzhill VTVM 10 mV to 100 V - EIS PANEL METERS

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12

Wilkinsons FOR RELAYS
 \cdotsP.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURN LARGE STOCKS HELD OF MINIATURE G.E.C. SEALED RELAYS

EQUIPMENT WIRE. 71.0076, ${ }^{1 / .024,} 14 / .004 B$ | P.V.C. type and 2 various colours $80 /-$ per 1,000 yards, |
| :--- |
| pose $6 /-$. |
| $14 / .0076$ zype $11 \& 15$ per 1,000 yards, post $12 / 6$. | MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt. 1.5 ampere. Size $2 \times 1.13 \times 0.63 \mathrm{in}$. Weight $1 \$ 0 \mathrm{oz}$.

Ideal for model work, $12 / 6$ each. $120 /-$ doz., post $1 / 6$. STROBOSCOPE FORK. 125 cycles. P.O. No. 5, 30/each, post $2 / 6$.
LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS. SIZE 5s. 4 pole, 11 way and off $110 / \mathrm{m}$ a pole,
12 way $110 \%, 24$ pole, 11 way and off $210 /-54$ pole Oni 12 Way $110 \%, 24$ pole, 11 way and off $210 /-.54$ poleg On/
OH 150%. N.S.F. SOLENOIDS type $3 E 115.2$ ohms 48 v . D.C. $17 / 6$ ea. CERAMIC AND PAXOLIN WAFER SWITCHES available from stock at keen prices, send for list. 24 , way
Double Pole Pax Wajer Switches $12 / 6$ each, post $2 / 6$. P.O. STANDARD RACKS bit. U channel sides drilled
for igin. panels heavy angle base, $150 /$ cge $20 /$.. Desk for 19in. panels heavy angle base, $150 / \mathrm{m}$, cge 20/-. Desk
Units for Racks $30 /-$ cge $7 / 6$. AIR BLOWERS. $200 / 250$ volt. A.C. cylindrical Tin. 7in. suizable for intake or extraction. 1/50th h.p. $\mathbb{1} 10$. ELCOM STUD SWITCHES. 12 pole 2 way or 3 way eypes on 3 Banks, break before make action, SO/- each. GEARED MOTORS. I' r.p.m. or ${ }^{3}$ r.p.m. 4 watts very
powerful, reversible 24 v . A.C. $3 /=$, posc $2 / 6$, can be operPRESSURE GAUGES, 211 , $60,250,400$ or 600 Psin $25 /-$ each. 4 in. flange $30,60,300$ p.s.i., $37 / 6$, 100 p.s.i. with $0 / 30 \mathrm{ins}$. vac., $37 / 6$, post $2 / 6$.
VACUUM GAUGES. 2 in . scaled. O/30 inches of mercury,

STANDARD LEVER KEYS, 3 POSITION 4C lock/4C lock $17 / 6$ each.
Stop/6C $15 / 6$ each.
$2 C 2 M$ non +10 ck. $14 / 6$ each. 2 C 2M $\begin{aligned} & \text { non+lock } \\ & \text { non-lock }\end{aligned}$ 4 C non-lock/6C

LAMP square case. Ideal spotlight 70% each, pose 10
BATTERY CHARGERS at special price made by Westinghouse, worth 635 . Inpus $200 / 250 v$. A.C. output $6 v$. I 15 amps D.C. with ammeter, fusesi regulated by a 4-position
switch and sliding resistance. OUR PRICE 170/-. Cge. 15/-, MINIATURE DIGITAL DISPLAY SERIES 661 Counting Insts. Ltd., an assembly of five units each displaying
and letters 625 complete, send for details.

SUB-MINIATURE Microswitch Honeywell S.P.D.T type 11 SMI TN 13 size sin. \times in. \times fin. $6 / 6$ each, or JACK PLUGS. 2 Point with screweon cover. 2/6, post 9d.
 O 201 on headphone cord $3 / \%$, PLUG-IN RELAYS. Londex 4 change-over HD cont
20 v . D.C. or 240 V . A.C. with base and cover, 35% each. RELAYS, 24 volt D.C., 4 make, 4 break heavy duty contacts with dust cover, $12 / 6$ each. quantities available. MINIATURE BUZZERS. 12 volts with tome adjuster, $7 / 6$ each as illustrated, approximaze size SPEAKERS ELAC 5in. ROUND. 9700 ROOM TH L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY Phone: 01-684-0236

TERMINAL BLOCKS. 2 way 5C/430
or 3 way SC/432 50% Der 100 or $\leqslant 20$ or 3 Way SC/432 $50 /$ per
per 1,000. (As illustrated.)
WELDING AND SOLDERING OUTFITS. 230/240 volts with 4-position rotary switch and 3 -terminal setting
gives 12 variations of heat. With metal case containing filler gives 12 variations of heat. With metal case containing filler
rods, fluxes, etc., fis each. Carriage $10 /-$. Brand new. MAGNETIC COUNTERS. Veeder Root with zero res 800 counts per minute, counting to 999,999 . 110 or 125 volts A.C. or 110 volts D.C. 65/-each, post $3 /$. . VACUUM CONDENSERS, 25 pf., $32 \mathrm{KV}, 27 / 6$, post $3 / \mathrm{m}$. METERS GUARANTEED. Complete list available.
 Microamps $0 / 500$ 2in. MC....25/ Microamps 0/500 24 in . MC. ...37/6 Milliamps $0 / 502 \mathrm{lin}$. MC.... Amps $50-0.502 \mathrm{in}$. MC Amps 0/S $2 \mathrm{in} . \mathrm{MC}$... olts $5 / 0 / 521 \mathrm{in} . \mathrm{MC}$ Volts $0 / 202 \mathrm{in}$. MC. Volts $0-402 \mathrm{in}$. MC
 MICROAMPS O/S0 sealed in Rontgens 2 lin . MC $45 /-$ Sin scale. ONE HOLE FIXING SWITCHES DOUBLE POLE ON/OFF 3 amp 250 yolt A.C. Itin. X Jin.$\times in.$
$30 /-\mathrm{per}$ dozen. $200 /$ per 100 . Pose
$3 /-$ per dozen, 6% per 100 .
 MASTER CONTACTOR. Precision made. Contacts making and breaking twice per second in sound proof case,

 16; 0.5 mfd. 2.5 kV , $17 / 6$: 1 mfd. 2 kV . $17 / 6$. kV . condensers, quantilies ex-stock at low prices.
BRIDGE MEGGER series 1 . With resistance box 1,000 volts, range $0 / 100$ mesohms-infinity, usual prise
ci89, our price 60 .

ONE HOLE FIXING. Stop/4 C.O. non-locking/ TRA NSFORMER. $200 / 240 \mathrm{v}$., tapped $6.3 \mathrm{v} ., 8.3 \mathrm{v}$

JUST PUBLISHED a■EnsTEarE AUDID-TROIIISS 1970

The 1970 edition of Lasky's famous Audio-Tronics catalogue is now available-FREE on request. The 28 tabloid pages-many in full colour are packed with $1,000 \mathrm{~s}$ of items from the largest stocks in Great Britain of everything for the Radio and Hi -Fi enthusiast. Electronics Hobbyist. Servicemen and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi - Fi (including Lasky's budget Stereo Systems and Package Deals). Tape recording and Audio accessories plus Lasky's amazing money saving vouchers worth over $\mathbf{£ 2 5}$ Os. Od. All the goods shown in the "Audio-Tronics" catalogue are available from any of our branches or by Mail Order to any address in the U.K. or Overseas-bringing the benefits of shopping at Lasky's to you in the comfort of your home. A $\frac{1}{4}$ million customers have already received their copy of the "Audio-Tronics" catalogue.

Send: Your name and address and $\mathbf{1 / 6}$ for post ondy and inclusion in our regular mailing list. W.W. Readers note : the Audio-Tronics catalogue is equal to over 150 pages of our current W.W. advertising!
13-15 CAVELL STREET, LONDON, E.1.

ELEOTROALJE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS
BARGAINS IN NEW TRANSISTORS
ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

2N696	5/6	2N3707	4/-	BA102	9/-
2N697	5/6	2N3708	2/9	BC107	2/9
2N706	2/9	2N3709	3/-	BC108	2/6
2 N 1132	9/9	2N3710	3/3	BC109	2/9
2N1302	4/-	2N3711	3/11	BC147	4/3
2N1303	4/-	2N3904	7/6	BC148	3/3
2N1304	4/6	2N3906	7/6	BC149	4/3
2 N 1305	4/6	2N3731	23/-	BC153	10\%
2N1306	6/9	2N3820	25/6	BC154	11/-
2N1307	6/9	2N3325	$10 / 6$	BC157	3/9
2N1308	8/9	2N3794	3/3	BC158	3/6
2N1309	$8 / 9$	2N4286	3/3	BC159	3/9
2N1613	6/-	2N4289	3/3	BC167	2/6
2N1711	7/-	2N4291	3/3	BC168	2/3
2N2218	$9 / 3$	2N4292	3/3	BC169	$2 / 6$
2 N 2147	18/9	2N4410	4/9	BCIT7	$6 / 3$
2N2369A	6/9	2N5192	25/-	BC178	5/8
2N2646	10/9	2N5195	29/3	BC179	6/-
2N2924	4/3	40406	16/3	BD121	18/-
2N2925	5/3	40408	14/6	BD123	24/3
2N2926R	2/3	ACl26	6/6	BF178	10/6
2N2926O	2/3	AC127	6/-	BFX29	10/9
2N2926Y	2/3	ACl 28	$61-$	BFX85	8/3
2N2926G	2/3	ACi76	11/-	BFX88	7/9
2 N 3053	5/6	ACY22	3/9	BFY50	4/6
2N3054	14/3	ACY40	4/-	BFYSI	4/3
2 N 3055	16/6	ADI 40	191-	B5×20	3/9
2 N 3391 A	5/6	ADI49	17/6	MJ480	21/-
2 N 3702	3/6	AD161	16/-pr.	MJ481	271-
2 N 3703	3/3	AD162 $\}$	16/-pr	MJ491	301-
2N3704	3/9	AFI18	16/6	P346A	$5 / 9$
2N3705	3/5	AFI24	7/6	V405A	$7 / 9$
2N3706	3/3	AFI27	7/-		

RESISTORS

Code	Power	Tolerance	Range	Values available	1 to 9	10 to 99	100 up
c	1/20W	5\%	$100 \Omega-220 \mathrm{~K} \Omega$	E12	18	16	15
C	1/8W	5\%	$4.7 \Omega-1 \mathrm{M} \Omega$	E24	$2 \cdot 5$	T	1.75
C	1/1W	10\%	$4.7 \Omega 10 \mathrm{M} \Omega$	El2	2.5	1.75	1.5
C	1/2W	5\%	$4.7 \Omega-10 M \Omega$	E24		$2 \cdot 25$	5
MO	1/2W	2\%	$10 \Omega-1 M \Omega$	E24	9	8	7
C	IW	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	4	3.25	3
WW	iw	10\% $\pm 1 / 20 \Omega$	0.22 2 -3.3	El2	4	15 d . all quantities	
WW	$3 W$	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	El2		15d. all quantities	
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	El2		15 d . all quantities	

Codes: $C=$ carbon film, high stability, low noise. Prices are in pence each for each ohmic MO = metal oxide, Electrosil TR5, ulera low noise WW = wire wound, Plessey.

Values:
E12 denotes series: $1,1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3$, $E 24 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2$ and their decades. E24 denotes series: as E12 plus $1 \cdot 1,1 \cdot 3,1 \cdot 6,2$, $24.3,3$
decades.

NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A. Only $57 /$ each. Operates with 18 V power supply. Sensitivity 20 mV into $20 \mathrm{M} \Omega, 3$ wates into 7.5Ω. Supplied complete with application Data on orders for 2 or more.
PE NOV. 69 STEREO AMPLIFIER KIT less metalwork .. $£ 11 / 18 /-$ NET complete

CARBON SKELETON PRE-SETS

Small high quality, type PR: Linear only; 100Ω. $100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{MQ}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{MQ}$ vertical or horizontal mouncing .. I/-each
S-DeCs PUT AN END TO "BIRDS. NESTING'. Components just plug in. Saves valuable time. Use components again and again.
$S-D e C$

Only $30 / 6$ post free
Compact T-DeC, increased capacity, may be
emperature-cycled.
only $51 /$ - post free
WAVECHANGE SWITCHES
IP I $2 \mathrm{~W} ; 2 \mathrm{P} 6 \mathrm{~W} ; 3 \mathrm{P} 4 \mathrm{~W} ; 4 \mathrm{P} 3 \mathrm{~W}$-long SLIDER SWITCOHES Double pole, double thr

MULLARD SUB-MIN ELECTROLYTICS
C426 RANGE
Axial Ieads. Values Axial leads. Values ($\mu / F / V$): $0.64 / 64 ; 1 / 40$; 6.4/25; 8/4; 8/40; 10/2.5; $10 / 16$: $10 / 64 ; 11.5 / 25 ;$ $\begin{array}{lll:l:l}6 / 4 / 25 ; & 8 / 4 ; & 8 / 40 ; 10 / 2 \cdot 5 ; 10 / 16 ; 10 / 64 ; & 12.5 / 25 ; \\ 16 / 40 ; & 20 / 16 ; 20 / 64: 25 / 6 \cdot 4: 25 / 25 ; 32 / 4: & 32 / 10 ;\end{array}$ $32 / 40 ; 32 / 64 ; 40 / 16 ; 40 / 2 \cdot 5 ; 50 / 6-4 ; 50 / 25 ; 50 / 40 ;$ $64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ; 80 / 25 ; 100 / 6.4 ; 125 / 4 ;$ 125/10; 125/16; 160/2.5; 200/6.4; 200/10; 250/4; $320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ; 400 / 4 ; 500 / 2 \cdot 5$.
LARGE CAPACITORS. ALL NEW STOCK High ripple current types: $2000 \mu \mathrm{~F}$ 25V 7/4;
$2000 \mu \mathrm{~F} 50 \mathrm{~V}$ 11/4: $5000 \mu \mathrm{~F}$ 25V $12 / 6 ; 5000 \mu \mathrm{~F}$ $50 \mathrm{~V} 21 / 11 ; 1000 \mu \mathrm{~F} 100 \mathrm{~V} 16 / 3 ; 2000 \mu \mathrm{~F} \quad 100 \mathrm{~V} 28 / 9$. $5000 \mu \mathrm{~F}$ 7ov $36 /-; 5000 \mu \mathrm{~F}$ i $100 \mathrm{~V} \quad 58 / 3 ; 1000 \mu \mathrm{~F}$ $50 \mathrm{~V} 8 / 2 ; 2500 \mu \mathrm{~F} \quad 64 \mathrm{~V} \quad 15 / 5 ; 2500 \mu \mathrm{~F} 70 \mathrm{~V} 19 / 6$.
MEDIUM RANGE ELECTROLYTICS Axial leads, Values ($\mu \mathrm{F} / \mathrm{V}$): $50 / 50$ 2/-: $100 / 25$ 3/9: $1000 / 10$ 3/ $\rightarrow 500 / 506 /=1000 / 254 /=: 1000 / 50$ 7/-: $2000 / 25$ 6/ $-500 / 506 /-; 1000 / 254 /-; 1000 / 50$

SMALL ELECTROLYTICS

Axial leads: $5 / 10,10 / 10,25 / 10,50 / 10 \quad 1 /$-each $25 / 25,47 / 25,100 / 10,220 / 10 \ldots$... 1/3 each
COMPONENT DISCOUNTS
10% on orders for components for 65 or more.
$\mathbf{1 5 \%}$ on orders for components for 15 or mor (No on orders for components for C15 or more. (No discount on net items)
POSTAGE AND PACKING
Free on orders over 62.
Please add $1 / 6$ if order is.
Over'seas orders order is under $\mathrm{C2}$.
cost.

PEAK SOUND AMPLIFIER KITS
The new Englefield Kits

Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into 15Ω - 13 watts R.M.S. Price $\mathbf{2 3 8 . 9 . 0}$ Net In total kit form $\mathbf{6 3 2 . 1 2 . 6 \text { net }}$

STEREO 25 WATTS PER CHANNEL

Supplied in kit form with complete amplifier, pre-amplifier and regulated power supply modules. Output per channel into 15Ω -28 watts R.M.S. Price 658.15 .0 Net Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound odvertisements.
Inputs:
Magnetic, RIAA 3.5 mV
Ceramic $\quad 35 \mathrm{mV}$
Radio 100 mV
Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assembles (as illustrated) $66,0,0$.
Other Peak Sound Products as advertised.

Any type with $\frac{1}{1}$ amp double pole mains switch.. extra $2 / 3$
FETS n-channel
Low cost general purpose 2N5163, 25 vol
Audio/r.f. Texas 2 N3819
only 5/- each
Motorola 2N5459 (MPFIO5)
9/- each
30 WATT BAILEY AMPLIFIER COMPONENTS:
Transistors for one channel $\mathbb{7 / 5} / 6$ list, with
10% discount
only $\mathbf{6 6 / 1 1 / -}$
Transistors for two channels $[\mid 4 / 11 /-$ list,
Transistors for two channels $2 / 4 / 11 /-$ lise,
with 15% discouns Capacitors and resistors for one channel, lise $£ 2$.
Princed circuit board free with each transistor set
Complete unregulated power supply kit $\mathbf{6 4 / 1 7 / 6}$ mono or stereo, subject to discount.
mplete regulated power supply kit $£ 9 / 5 /$ - subject to discoune. Further details on application.

MAIN LINE AMPLIFIER KITS AS ADVERTISED. PRICES NET AUTHORISED DEALER SINCLAIR IC.IO INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolishic integrated circuit amplifier and pre-amplifier is now available for despatch from stock. It is the equivalent of 13 sransistor/ 18 resistor circuit plus 3 diodes and the first of its kind ever. It is d.c. coupled and applicable to an unusually wide range of uses all of which are detailed in the manual provided with it
$59 / 6$ NET
post free

R.S.C. SENSATIONAL HIGH FIDELITY STEREO 'PACKAGE' OFFERS
 Matching as recommended for optimum per- formance. Compare prices with equipment and cabliets purchased individually. 30 Watt Output
 Goldring Transcription Turntable on Plinth * Shure or Goldring 6800 H Magnetic Pick-up * Shure or

 太 Super 30 Amplifier in veneered housing. AUDIOTRINE HIGH FIDELITY LOUDSPEAKERS

 low fund mental remonance. "D" indicaute extended treveter Cone providiog
 15 ohm high qualched 12 nin.
 SYSTEMS quency ductlon. Or $S E N$
 Estremely
 Anished in Plinths Anibhed in Teak or Alrormois veneer. | Tinted |
| :--- |
| Platic | Bpecias Lotal price. Four fully wired units
 76 Gns.
 13 Watt Output
 \star Garrard SP25 Mk. II 4-speed Player Unit, on Plinth, \star Goldring CS90 Ceramic P.U. Cartridge with diamond styius. Transparent Plastic cover 3 gns extra. 53 Gns. Terms Dep. $£ 10.0,3$ and 9 monthly payments 13 WATT 'PACXAGE

 $47 \frac{1}{2}$ Gns
 RSC TA12 Mk II 13 WATT STEREO AMPLIFIER
 SYSTEM
 R.S.C. BATTERY/MAINS CONVERSION UNITS $\frac{\text { Ready for nee. } 3 \text { ONS. }}{\text { SELENIUM RECTITERS }}$
 R.S.C. MAINS TRANSFORMERS MIDGET CLAMPED TYPE $21 \times 21 \times 2$ ii. . 150 math , $33 / 6: 230$ watha OUTPUT TRANSFORMERS

 PUB4. FMOOTHING CROKES
 SMOOTHEQ CROKES
 $59 / 9150 \mathrm{~mA} \cdot 7-10 \mathrm{H}, 250 \mathrm{n}$ 12/9: $100 \mathrm{~mA}, 10 \mathrm{H}, 200 \mathrm{a} 10 / 8$

R.S.C. SUPER 15 | HIGH FIDELITY AMPLIFIER COMPLETE KIT OF PARTS, point to
point wiring diagrams
and detailed Instructions. eminently suttable for use with any EMINENTLY SUITABLE FOR USE WITH ANY Magnetic Moving Coll, Ribbon or Crystal.
CURRENTLY AVAILABLE. BUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BE USE WITE FIRST-RATE ANCILLARY EQUIPMENT. Unit factory built 29 kns . Deposit $£ 7 / 5 /-$ and 9 mthiy. paytuents $58 / 9$
(Total $£ 33 / 13 / 9$) or in Teak or Afrormonia veneer housing 32 gns. Carr. 15/-. Terms:
 chinn fiul comptrece wrinn du: $12 \frac{1}{2} \mathrm{Gns}$
 Depoait 4 Gns. and y
monthly payments $31 / 1$
Toual Tenk or Alrormosia t. 1 HULL it Paragon Sereet (Hall-day Thurs.). Tel. 20505
 MAIL ORDERS to: 102-10 Henconner Lane, Bramley, Leeds 13. No C.O.D. under
EI. Terms C.W.O. or C.O.D. fl. Terms
Postage $4 / 6$ extra under $~$
2 $5 / 9$ exera under 65 . Trade supplied.S.A.E. with enquiries Branches open all day Sats.
MAIL ORDERS MUST NDT BE SENT TO SHOPS.

32 High Street (Halloday Thurs.). Tel. 56420 LEICESTER

Arcade, Briggate
(Half-day Wed.) Tel. 28252 LEEDS
73 Dale St. (Hall-day Wed.).' CENtral 3573 LIVERPOOL 238 Edgware Road, W. 2 (Hel. CENLIf:dzy Thurs.). LONDON 60A Oldham Street (Hall-day Tel. PAD Mod MANCHESTER 106 Newport Rd. (Hall-day ${ }^{2}$ N 41 Blackert Street (opp. Fenwicks NEWCASTLE UPON Store) (hall-day Wed.). Tel. 21469
13
Exchange Street (Casele Market Blds.) M

5-7 County (Mecta) Arcade. Briggate

 NEWCASTL TYNE 13 Exchange Sereet (CCastle Market Blds.) SHEFFIELD

SERVICE TRADING CO

Variable voltage transformers

INPUT 230 v. A.C. 50/60

 OUTPUT VARIABLE O/260 v.A.C. BRAND NEW. Keenest prices in the country. All eypes (and spares) from+ to 50 amp. available from stock. $0-260 \mathrm{v}$. at 1 amp....... $6510 \quad 0$ $0-260 \mathrm{v}$. at $2.5 \mathrm{mmps} . .$. © 66150 $0-260 \mathrm{v}$. at 5 2mps. $0-260 \mathrm{v}$. at 8 amps. $0-260 \mathrm{v}, 2 t 10 \mathrm{amps}$, $0-260 \mathrm{v}$. at 12 amps. $0-260 \mathrm{v}$ at 20 amps. $0-260 \mathrm{v}$ at 37.5 amps 0.260 v at 50 amps . 20 Different types available fo
OPEN TYPE (Pancl MOUn

RING TRANSFORMER

Functional Versatile Educational This multi-purpose Auto Transformer. with 1 (1) Tarse centre aperture, can be used as a Double
wound cur mit ransiomer Auto Transiormer
H.T. or L.T. Transiormer, by simply hand winding the required number of turns through che centre opening.
E.g. Using the RTIOO V. Model the output could be wound

diemonstration thansformer

 (STENZYL TYPE)Two removable coils are
tapped at $0,110,220$ voles, tapped $2 t 0,36$ voles respece-
and $6,12,36$ voles, tively. A composite appar-
atus designed for class demonatus designed for class demon-
stration. Electro magnetic induction, aumping ring,
induction lamp, relationship
 between field intensity and melting, are just a few of the possible experimend induction modified model. $£ 14 / 10 / \mathrm{F}$.

220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special circult $47 / 6$, plus $2 / 6 \mathrm{Pm}$. \& P.
.
LIGHT SOURCE AND PHOTO CEL MOUNTING
Precision engineered light source with adjustable lens assembly and
ventilated
lamp housing to 4 \Rightarrow $\begin{array}{ll}\text { veneilated lamp housing to take } \\ M B C & \Rightarrow\end{array}$ ORP. 12 or similar cell with optic window. Borh units are single holle fixing. Price per pair $£ 2 / 15 / 0$ plus $3 / 6$ P. \& P.
\qquad

CONDENSERS

LARGE DIGIT $12-18$ v. D.C. MAGNETIC COUNTER 4in, drum, calibrated o-9. Figures 1 tin.
high
sin. high sinn. wide. Set of im, ca, The units which can be used in multiples are
ideally suited for batch or lap recording or for the many purposes where large easily read numerals are required. Price 18/6, P. \& P. 2/6.
VEEDER ROOT COUNTER 230 v. A.C. 50 cycle 5 figure counter

fowar antinars
(NEW)
 .C.
 Enamel, heavy duty brush assembly designed for continuous dury. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 50 hm 4.7a., 10 ohm 3 az ., 25 ohm 2 a ., 50 ohm 1.4 a ., 100 ohm 1 a ., 250 ohm 230 mA ., $2.5 \mathrm{k} \mathrm{ohm}-1 \mathrm{ia}$., 5 k ohm 140 mA ., Diameter 3 tin. Shaft length tin. dia. hin. 27/6. P. \& P. $1 / 6$.
 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{~K} / 2.5 \mathrm{~K}$ ohm. All at 14/6, P. \& P. 1/6.
Black Silver skirted knob calibrated in Nos. I-9. $1 \frac{1}{2}$
STROUESTRODESSTROE

MOTORISED SWITCHING UNIT (EX-W.D.)
 4 r.p.m. and 5 r.p.m. Price 25/-
P. \& P. $4 / 6$.
EX. W.D. MINIATURE

BODINE TYPE N.C. 1 GEARED MOTOR (Type 1) 71 r.p.m. torque 10 lb . in Reversible $1 / 70 \mathrm{th} \mathrm{h.p}$.50 cycle. 38 mp .
(Type 2) 28 mp (Type 2) 28 r.p.m. torque 20 lb . in reversible $1 / 80$ th h.p. 50 cycle. 282 mp .
The above two precision made ${ }^{2}$. S^{2}. The above two precision made U.S.A. motors are oliered in
115 v A.C. Supplied complete with transformer for $230 / 240 V$ A.C. input Price, either type 63.3 .0 plus $6 / 6$ former E2.2.6 plus 4/6. P. \& P. These motors are ldeal for rotating aerials, drawing curtains. display stands, vending machines etc. etc.
230 v. GEARED MOTOR (as illustrated)
6 R.P.M. or 10 R.P.M.
$230 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. non-raversibie, approx.

MINIATURE UNISELECTOR 3 banks of 11 prositions, plus homing bank. ${ }^{49}$ ohm coil. 24-36 v. D.C.operacion. Carefully
removed from equipment and removed from equlpment and

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, $24 . v$. D.C. operation.
6 BANK 25 WAY FULL WIPER
25 ohm coil, 24 v. D.C. operatio
E6.10.0, plus $2 / 6 \mathrm{P}$ \& P.
8-BANK 25-WAY FULL
8-BANK
WIPER
24 v. O.C. operation, $\varepsilon T / 12 / 6$, plus $4 /-$ P. \& P. $-\infty$

RELAYS

NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A
HIGHLY COMPETITIVE PRICE.

COIL	WORKING		
0	D.C. VOLT	CONTACTS	PRICE
170	$9-12$	$4 \mathrm{c} / \mathrm{OH.D}$.	14/6
170	$9-12$	$3 \mathrm{c} / \mathrm{O}+1 \mathrm{H.D} /$.	12/6
280	6-12	$2 \mathrm{c} / \mathrm{o}$ incl. base	14/6
700	12-24	$2 \mathrm{c} / \mathrm{o}$ incl. base	12/6
700	16-24	$4 \mathrm{c} / \mathrm{o}$ incl. base	15/6
700	16-24	4M 28 incl. base	12/6
2500	30-50	$2 \mathrm{c} / \mathrm{oH.D}$. incl. base	$12 / 6$
9000	40-70	$2 \mathrm{c} / \mathrm{o}$ incl, base	10\%

MINIATURE RELAYS
$9-12$ volt D.C. operation. 2 c/o 500 M.A., contacts. Size only lin. $\times \mathbf{f} \times 1 \mathrm{in}$. Price II/6 Post pald.
$30-36$ v. D.C. Operation. $2 \mathrm{c} / 0500 \mathrm{M} . \mathrm{A}$ contacts.
3.200 ohm coil. Size only x 230 VOLT AC RELAY LONDEX fou e/o contacts. $18 / 6$, incl. base. Pose Paid

NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size $81 \mathrm{high} \times 3 \times 1 \mathrm{f}$. $30 /-$ each, plus $4 /-$ P. \& P. P . Cadmium Type 1.2 v. 7AH. Size: height $3 f$ in., width 2 tin. $\times 1$ Itin. Weight: approx. 13.ozs. Ex-R.A.F.

$4 \times .5$ volt unit serles con-
nected, output up to 2 v . netted output up to 2 v .
at 20 mA. in suntight,
30 times the efficiency of 30 rimes the efficiency of
selenium. 45%. P. \& P. $1 / 6 \mathrm{~d}$.

KING OF THE PAKS Unequalled Value and Quality
SUPER PAKS NEW BI-PAK UNTESTED
Gatiofaction GUARANTEED In Every Pak, or money hack.
Pak No.

U2 \quad fo Mixed Germandum Transistora AF/RF. U3 75 Germanium Gold Bonded Diodes sim, OA5, OA47 U6 40 Germanlum Transistora Ilke OC81, AC128..
 $\overline{\text { U7 }} 16$ 8ilicon Rectiflers Top-Hat 750 mA up to $1,000 \mathrm{~V}$ U8 50812 Planar Dlodea 250 mA OA/200/20 0920 Mixed Volte 1 watt zener Diode
 01330 PNP-NPN 8L. Transistora OC200 \& 2810 O14 150 Mixed Billicon and Germanium Dlades.
 01730 Germanium PNP AP Tranaistora TO-5 like ACY 17-22. U18 $\quad 86 \cdot \mathrm{Amp}$ slicon Rectifiers B YZ13 Type up to 600 PIV. $018 \quad 30$ 8illcon NPN Transiatora tike BClos

 U22 101 -amp Olass Min. Slicon Eectifers High Volts $023 \quad 30$ Madt'o like MaT Series PNP Translotori. | U24 | 20 Gertnsaium $1 \cdot a m p$ Rectifers GJM up to 300 PIV |
| :--- | :--- |
| U25 | $25300 \mathrm{Mc} / \mathrm{A}$ NPN | U26 30 Fast 8 witching Billion Diodea like IN914 Micro-min 028 Expermenters Assortmeat of int egrated Circuild, untested U29 $\quad 101$ amp 8 CRR's TO- 5 can up to 600 Pry OR81/25-600 U30 is Platic gilicon Planar tram. NPN 2N 2924-2N2926. . U31 20 BL. Planar NPN trans. low nolee Amp 2N3707...

 035 25 81L Planar trabs. PNP To-18 2N2906.
 U38 20 Frat 8 wteching Bli trans. NPN, $400 \mathrm{Mc} / \mathrm{A} 2 \mathrm{~N} 301$ U39 SORF Germ. PNP kans. 2N1303/5 TO-5. 041 30 RF Germ. tranh. TO-1 OC45 SET72 U42 10 VHF Germ. PNP trane. TO-1 NKT6E7 AP117

BFPAI SENICOVDUGTDRS

 NEW LOW PRICE TESTED S.C.R.'S 10
$\xrightarrow{\text { I.C AMPLIFIER }}$

NEW LOW PRICE TESTED S.C.R.'S					
$\begin{aligned} & 1 \mathrm{Amp} \\ & \text { (TO-5) } \end{aligned}$		3 Amp 7 Amp 16 Amp 30 Amp (TO-66) (TO-48) (TO-48)			
PIV	Ench				
50	4/8	5/.	9/6	$10 / 6$	201-
100	5/-	6/6	10/6	12/8	23/-
200	${ }_{8 / 8}^{7 /}$	7/8	11/6	15/-	28/-
500	$10 / 6$	11/8	15/6	25\%	351.
800	12/6	14/-	18/-	30/-	80\%

\mid SIL. RECTS. TESTED

 $\begin{array}{llll}100 & 14 / 6 & 15 /- & 22 / 6 \\ 2000 & 17 / 6 & 20 /- & 28 / 6 \\ 400 & 20 /= & 25 /- & 35 / 6\end{array}$ $\mathrm{BOM}=$ Blocking volt-
age in ether direction. 2 N3055 118 W SIL POW ER PPN OUR
PRICE $12 / 6$ each
PLEASE NOTE. To swold anyfurther Llecreased Pontal
Charget to our Customery Charget to our Customen
and ennble us to keep our
"By Return Postal Service" "By Return Postal Service" Which is second to none, we
have reorgantzed and have re-organtzed and
ntreamulined our Deapatch
Order Department and we Order Department and we
now request you to send all now request you to send nill
your orders together with your orders together with
your remitance. direct to your remithance. direct to
our Warehouse and
Derpatch Department, Mastal Address: BI-PAK
SEMCONDUCTORS, Dea-
 WARE, MERTS. Poorage
and packing ruil $1 /-$ per
order. Mintoum oder 10/.

Identical encapsulation and pin contiguration to the
following: $8 \mathrm{LLOD}-\mathrm{s}$, ICl0
and IC403. and IC403. Each circult
incorporates incorporates Mre-amp
and clans A.B. Power amp and clans A.B. Power amp
athge canuble of dellvering
up to 3 watte Alage rabable of dellvering
up to 3 watto RMB. Fuly
teated sud ruaranted. eented and kuaranteed.
Bupplled complete with
circuit details and data $\begin{array}{ll}\text { CODED BP.1010. } & \text { OURA. } \\ \text { LOWEAT PR1CE } & 301-\end{array}$ eaches 10 up $251 \mathrm{Feach} 30 /-$ OTHER
ONOLTHIC BP424, Zero voltage

QUALITY-TESTED PAKS
© Matched Trans. OC44/45/81/81D .. 10/0 Red Spot AF Trans. PNP.
White 8pot RF Trana. PNP

1 12 A RCR 100 PIV
RII. Trant. 28303 PY

4 High Current Trane. OC42 Eqve.
S Power Transistors 1 OC28 10 Cl
4 Oc75 Tranalistorn 10.
1 Power Trans. OC20 100 V
OA202 sul. Diodes Sub-
0 OA202 s11. Dlodes Bub-min.........
2 Low Nowe Trans. NPN 2N $29 / 30$
1 84. Trans. NPN VCB 100 ZT 86
80 A81 Diodes.
OC72 Tranaintor

+ Sll. Recta. 400 P1V 500 ma
B GLT883 Trans. Eqvit. OCA4
2 2N708 Bu. Trant. 300 Mcts
2 2N708 Bil. Tranh. $300 \mathrm{Mc/m}$.NPN
3 GT31 LF Low Noise Germ Tran.
$\begin{array}{ll}\text { - IN914 sil. Diode } 75 \text { PIV 75mA..... } \\ 8 & 0 \text { A95 Germ. Diodes Bub-min. IN69.. }\end{array}$
8 OA95 Germ. Dlodes Bub-min. INB9...
3 NPN Germ. Trans. NKT773 Eqvi.
${ }_{2}$ OCC2 P Power Trans. Germ. $^{\text {ACl }}$
20 O25 Power Trans. Germ.
4 AC128 Trane. PNP High Oxin
4 AC127/128 Comp. pulr PNP/NP
${ }_{3}$ 4C127/128 Comp pais PNP/NPN
7 CG62H Gern. Diodes Eqvi. OA
12 Asmorted Oerrm. Dlodes Marked
ACl26 Germ. PNP Trans. ...
${ }^{1}$ AF117 Recta, 100 PIV 750 mA
7 ocsl Type Tran
2N2928 8ul. Epoxy Tran..
${ }^{2}$ OC71 Type Trans.
${ }_{3} 28701$ sil. Trana. Texas
210 A 60 PIV gu, Recr. 18458
BC108 BU1. NPN High Gain Trars....
2N910 NPN 8U. Trans. VOB 100 21000 PIV 8il. Rect. 1.5 A RES3310 AF 3 OC200 8u. Trans.
2 Bil. Power Rects. B
81ll. Power Trans NPN $100 \mathrm{mc} / \mathrm{i}$ 6K Zener Diodes 3-isv sub-min. ${ }_{3}{ }^{2 N}{ }_{2 N} 1182$ PNP Epitaxial Planar Sill 3 2N697 Epliaxial Planar Trana- 811.1
4 Germ. Power Trana.

NEW PRICES ON NEW COMPONENTS

RESISTORS

Hish stabluty, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm.): Body: \ddagger W: 8×2.8
Leads: 35
10\% ranges; 10 Ohms to 10 Megohms (E12 Renard Series),
5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Seriea),
5\% rices-per Ohmilc value.

	-	each	10 off	25 off	100 off
${ }_{6}{ }^{W}$	10\%	2 d.	1/6	3/3	10/4
2W	5\%	2 dd .	1/9	3/8	$11 / 8$
+W	10\%	$2 \mathrm{kd}$.	1/9	3/8	$11 / 7$
1W	5\%	3 d .	2/-	4/-	12/10

CAPACITORS
5
4/-
12/10
Submintature Polyester film, Modular for P.C. mounting, Hard epoxy resin encapsula $\pm 10 \%$ tolerance.
$\pm 10 \%$ tolerance. 100 Volt working.
Prices-per Capacitance value ($\mu \mathrm{F}$) $\quad 10$ off $\quad 25$ off 100 off
$0.001,0.002,0.005,0.01,0.02$

25 otI
$8 / 4$
$12 / 6$
100 off
$30 /-$

$0.001, ~ 0.002, ~ 0.005, ~ 0.01, ~$	0.02	
0.05

10d.

$4 / 3$
$6 / 1$
$12 / 6$
$15 / 6$
$41 / 8$
$51 /-$
Polystyrene film, Tubular. Axial leads. Unencapsulated $\pm 5 \%$ or $\pm 1 \mathrm{pf}$ tolerance, 160 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{FF}$)
$10.12,15,18,22,27,33,39,47$,
$56,68,82,100,120,180,220$.
270, 330. 390
470. 560 . 680. $820.1,000,1,500$ 2.200. 3.800. 4.700. 5.600
$8.800,8.200,10.000,15.000 \quad \cdots \quad 8 \mathrm{~d}$.
22.000

each	10 off	25 off
		$7 / 9$
5d.	$3 / 7$	$8 / 8$
6d.	$4 /-$	$10 / 10$
7d.	$5 /-$	$13 /-$
8d.	$6 /-$	$18 /-$

100 off

POTENTIOMETERS (Carbon)
Superior grade enclosed controls. Low rotational noise. Body dia., Lin, Spindle, $2 \mathrm{in} \times 3 \mathrm{in}$. Tolerance. 20%.
Linear: 1 K to 2 M . (iw at $40^{\circ} \mathrm{C}$)
Logarithmic: 5 K to 2 M . (tW at $40^{\circ} \mathrm{C}$).
$\begin{array}{lcc}\text { Prices per ohmic value } & \text { each } & 10 \text { off } \\ \text { GANGED STEREO POTENTIOMETERS (Carbon) }\end{array}$
10 off 25 off
100 off
150%
IW at $70^{\circ} \mathrm{C}$. Long spindle.
1W at $70^{\circ} \mathrm{C}$. Long Spindle.
$\begin{array}{llllll}\text { Prices per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 8 /- & 70 /- & 162 / 6 & 575 /-\end{array}$
SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets suitable for printed circult boards of $0 \cdot 1 \mathrm{in}$. P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: $0 \cdot 3 \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\$ \mathrm{M} . ~ \pm 30 \%$ above $\$ \mathrm{M}$. Horizontal ($0.7 \mathrm{in}+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2.5 \mathrm{M} . \pm 30 \%$ above.
$\begin{array}{lllcccc}\text { Prices-per ohmic value } & & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ \text { Miniature }(0.3 W) & \ldots & \ldots & 1 /- & 8 / 9 & 18 / 9 & 66 / 8\end{array}$ Miniature $(0.3 W)$
$8 / 9$
$7 / 1$ 00 off
$66 / 8$
$46 / 8$ ELECTROLYTIC CAPACITORS (Mullard.) - 10% to $+50 \%$ 46/8 Subminiature (all values in $\mu \mathbf{F}$)

4 V	.	.	8	32	84	125	250	400
6.4 V	.	.	8.4	25	50	100	200	320
10 V	. .	.	4	18	32	64	125	200
16 V	.	.	$2 \cdot 5$	10	20	40	80	125
25 V	.	.	1.6	6.4	$12 \cdot 5$	25	50	80
40 V	\cdots	.	1	4	8	18	32	50
64V	-	-	$0 \cdot 84$	$2 \cdot 5$	5	10	20	32
Price	.	.	1/4	1/3	1/2	1/-	1/I	1/2
Small (all	values	In	F)					
4V .	-	.	800		1.250			8.200
B. 4 V	.	-	840		1.000			2,500
10 V	.	.	400		640			1,600
16 V	.	-	250		400			1,000
25 V	.	.	160		250			640
40 V	\cdots	\cdots	100		160			400
04V	\cdots	\cdots	84		100			250
Price			1/6		2/-			3/-

Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}, 0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$ $0.15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-0 \cdot 33 \mu \mathrm{~F}, 1 / 3,0.47 \mu \mathrm{~F}, 1 / 6,0 \cdot 68 \mu \mathrm{~F}, 2 / 3,1 \mu \mathrm{~F}, 2 / 8.9 \mathrm{~d}$ $400 \mathrm{~V}: 1,000,1,500,2,200.3,300,4.700 \mathrm{pF}, 6 \mathrm{~d} .12,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$ $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.15 \mu \mathrm{~F}, \mathrm{I} / 2.022 \mu \mathrm{~F}, 16.033 \mu \mathrm{~F}, 2 / 8$.
$2 / 3.0 .47 \mu \mathrm{~F}, 2$ SEMICONDUCTORS: OA5. OA81, 1/9. OC4 OC4, 0C71, 0C81. OC81D, 0C82D $2 /-$ OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6, AF115, AF116, AF117 OC2s, OC28, 8/3. 1.250 P.LV., 3/9. 1.500 P.I.V., 4/-. (6A): 200 P.LV.. 3/-.. 400 P.I.V., 4/-. 600 P.I.V. 5/- 800 PINTEO CIRCUIT BOARD (Vero).

 SEND S:A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE
 Telephone: CAMBRIDGE (0223) 63687

(Visit us at our new Mail Order, Wholesale and Retail Premises)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/6

CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (* cepted) TERMINAL BLOCK CONN

No.	Sec . Taps		Amps			
IA	25-33-40-50.	\cdots	15	61010	0	$12 / 6$
18	25-33-40-50.	..	10	6712	6	916
1 C	25-33-40-50..	.	6	E6 15	0	916
10	25-33-40-50.		3	440	0	7/6
2A	4-16-24-32..	\cdots	12	472	6	8/6
28	4-16-24-32 ..	.	8		6	$8 / 6$
2 C	4-16-24-32 ..		4	$6^{31} 12$	6	716
20	4-16-24-32	.	2	127	6	5/-
3A*	25-30-35	.	40	41610	0	$12 / 6$
$38 *$	25-30-35	..	20	810	0	$10 / 6$
3 C	25-30-35	..	10	675	0	$8 / 6$
3 D	25-30-35	.	5	C4 2	6	7/6
3 E	25-30-35	.	2	[3 2	6	7/6
$4{ }^{\circ}$	12-20-24	.	30	613	0	$12 / 6$
48	12-20-24	.	20		0	9/6
4 C	12-20-24	\cdots	10	[4 5	0	8/6
4 D	12-20-24	..	5	6312	6	$7 / 6$
5 A	3-12-18	.	30	6912	6	916
58	3-12-18	.	20	672	6	8/6
. 5 C	3-12-18		10	C4 5	0	7/6
5D	3-12-18	..	5		6	$7 / 6$
6A	48-56-60		2	6312	6	6/6
68	48-56-60	.	,	6212	6	6/6
$7{ }^{\text {a }}$	6-12..	..	50	8107	6	$10 / 6$
78	6-12..	\cdots	20		6	$8 / 6$
$7{ }^{70}$	6-12..	.	10	6317	6	7/6
70	6-12..		5		0	6/6
8 8	12-24..	..	1	212	6	6/6
9 A	17-32..	..	8	465	0	8/6
10A*	9-15 ..	\cdots	2		6	6/6
11A	6.3		15	6210	0	716
12A	30-25-0-25-30		2	4312	6	8/6

voltages can be obtained.

Example: No. 1 .. 7-8-10-15-17-25-33-40-50v. No. $5 . . \quad$ 3-6-12-12-15-18v.

- Completely enclosed in beautifully finished metal case on/off switch, and carrying handle.

ISOLATION TRANSFORMERS

Built into metal case, size $8 \times 7 \times 7$ ins., with on/off switch, neon indicator. 13A 3 -pin socket outlet. Pri. 220-240, nec. $220-240 \mathrm{v}$. 1000 watts E 16.10 .0 . Carr. 15/-. 750 c wates E14.10.0. Carr. $12 / 6$ watt

DAVENSET ISOLATION TRANSFORMERS

Built into metal case, size $12 \times 81 \times 7$ ins. Pri. 240 v . Sec 110 v. 1500 watts. 13 A 3-pin socket outlet. $\mathbf{4} 12.19 .6$.
Carr. $15 /=$. Carr. 15/=.

HEAVY DUTY L.T. TRANSFORMERS

 Pri. 220-240v. Sec. 12v. 90A. Open frame sype. Flying leads. Size $71 \times 6 \frac{1}{2} \times 6$ ins. K15.0.0. Carr. 15/-. Pri. 200-220-240v. Sec. capped 14 v ., 15.5 v ., 28 v , 31 v ., 20A. Open frame type. Table top connections. $\mathbf{C l} \mathbf{C a r r}^{2} 12 / 6$. Pri. 240 v . Sec. tapped 4v., 6v., I lv., 200A. Size $11 \times 9 \times 7$ ins. 110 . 120 . 200 .Pri. 110-120v. $200-240 \mathrm{v}$. Sec. tapped 12 v ., 18 v , 24v., 30 v ., 8A. Table top connections. Fully tropicalised. 79/6.
Carr. 8/6. Carr. 8/6
Pri. tapped $200-250 \mathrm{v}$. Sec. 46 v . Very conservatively rated at 29 A . Size $11 \times 7 \times 7$ ins. Weight 75 Ibs. approx. Manu-
factured by Partridge. 115 . Carr. I5/-. factured by Partridge. 615. Carr. 15/-.
Pri. tapped 110 v ., 220-250v. Sec. 55v. 24A. 14v. 10A. 60 v . 2A. All windings very conservatively rated. Tropically finished. Terminal connections. Size $9 \times 71 \times 7$ ins. Weight
$65 \mathrm{Jbs} . ~$
12.19 .6 . Carr. $15 /-$.
Pri. $200-250 \mathrm{v}$. Sec. 17v., 24v., $31 \mathrm{v} ., 38 \mathrm{v}$., conservatively rated at 2.4A iwice. Open frame eype. Table top connections. Size $61 \times 41 \times 4$ tins. 63.15 .0 . P. \& P. $10 / 6$.

RADIO SPARES-H.T. TRANSFORMERS Pri. 200-250v. Sec. $350-0-350 \mathrm{v}$. ISOM/A. 6.3v., 3A CT 5.3 v . 2.5A CT. 5v. 3.5A. Half shrouded. Flying leads. 59/6. Carr. 8/6.

PARMEKO POTTED TRANSFORMERS
Sec. 6.3v. Sec. 2 0-2v. 4A 5 kv . Wkg. " C " core potted type. 17/6. P. \& P. 3/6

SCOTCH MAGNETIC TAPE
Type 3 M 459 in. 3,600 feer. Supplied new in maker's cartons. List price $\left\{18.10 .0\right.$. Our price £3.19.6. P. \& P. $5 /=$. $^{\text {. }}$

HIGH GRADE POTTED CHOKES

 BY FAMOUS MAKERS. NEW. GUARANTEED $20 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} .30 / \mathrm{m} . \mathrm{P}$. \& $\mathrm{P} .7 / 6.20 \mathrm{H} .180 \mathrm{~m} / \mathrm{a} .27 / 6$. P. \& P. 7/6. is H. $180 \mathrm{~m} / \mathrm{a} .25 / \mathrm{P}$. P. \& P. $7 / 6.12 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} .25 / \mathrm{m}$ P. \& P. $7 / 6.10 \mathrm{H} .180 \mathrm{~m} / \mathrm{a} .22 / 6 . \mathrm{P}$. \& P. $\mathrm{P} / 6.5 \mathrm{H} .300 \mathrm{~m} / \mathrm{m}$. $10 \mathrm{H} .120 \mathrm{~m} / \mathrm{a}$. $12 / 6 . \mathrm{P}$. \& P. $3 / 6$. $15 \mathrm{H} .75 \mathrm{~m} / \mathrm{a}$. $12 / \mathrm{c}$. P . \& P. $3 / 6.5$ H. $100 \mathrm{~m} / \mathrm{a} .6 / 6$. P. \& P. $2 /=0.75 \mathrm{H} .450 \mathrm{~m} / \mathrm{a}$. $15 /=$ P. \& P. 4/6.

Sameson's

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-723-7851

01-262-5125

250Ω i make contact. Size itin. inc. fixing serew x in
 inc. fixing screw X I x ins. 8/6. P, \& $P 1 / 6$. Diamond H sealed sype. 4 PDJ. 150 D lin. dia. Length 2 tins. $8 / 6$. P. \& P. 2/-G.E.C. sealed type 6945-69. $670 \Omega+$ C.O. contact. 7/6. P. \& P, 2/-. ADS A.C. 230v 2 C.O. contacts. Size if x it x itins. $10 / 6$. P. \& P. $2 / \mathrm{c}$.
SPECIAL OFFER. BLOCK CAPACITORS
G.E.C. 8 mid. 600 v . D.C. wkg. Six for $29 / 6$. Carr. $7 / 6$.
Dubliner. 1 mfd. 600 v , wkg. Six for $9 /-$ F. \& P. 3/6. T.C.C.
$\begin{aligned} & 2 \mathrm{mid}, 500 \mathrm{v} \text {. wkg. Three for 1/6. P. \& P. } \\ & \mathrm{mfd} .500 \mathrm{v} \text {. wkg. Six for } 6 / 6 \text {. P. \& P. } 2 / 6 \text {. }\end{aligned}$
$\begin{aligned} & \text { CAPACITORS. ALL BY. FAMOUS MAKERS } \\ & 8 \mathrm{mid} .2,500 \mathrm{v} \text {. D.C. wkg. } 70^{\circ} \mathrm{C} \text {. } 37 / 6 . \text { P.. \& P. } 7 / 6.8 \mathrm{mfd} \text {. } \\ & 1,500 \mathrm{v} . \text { D.C. wkg. } 70^{\circ} \mathrm{C} .22 / 6 \text {. P. \& P. } 5 / \mathrm{m}, \mathrm{mfd} .750 \mathrm{v} .\end{aligned}$
$\begin{aligned} & \text { wkg } 60^{\circ} \mathrm{C} .7 / 6 . \text { P. \& P. 3/6. } 4 / \mathrm{mid} .400 \mathrm{v} . \mathrm{D} . \mathrm{C} \text {. wkg. } 70^{\circ} \mathrm{C} \\ & \text { sub chassis meg. } 6 / 6 . \text { P. \& P. } 3 /-2 \mathrm{mid} \text {. } 1,500 \mathrm{v} \text {. D. C. wkg. }\end{aligned}$
$2 / .2$ mfd. $2,000 \mathrm{v}$. D.C. wkg. $60^{\circ} \mathrm{C}$. $8 / 6$. F. \& P. $3 / 6.8 \mathrm{mfd}$.
$5,000 \mathrm{v}$. D.C. wkg. $70^{\circ} \mathrm{C}$. 1/6. P. \& P. $1 / 6.0 .01 \mathrm{mfd} .8 \mathrm{kV}$.
D.C. wkg. $70^{\circ} \mathrm{C}$, tubular. $3 / 9$. P. \& P . $1 / 6$.
$\begin{aligned} & \text { P. \& P. } 2 / 6 . \\ & \text { A.C. WKG. BLOCK CAPACITORS }\end{aligned}$
$60 \mathrm{mid} .275 \mathrm{v} . \mathrm{wg} .45 / \mathrm{F} . \mathrm{P}$. \& $P .7 / 6.25 \mathrm{mfd}, 300 \mathrm{v} . \mathrm{wkg}$
$\begin{aligned} & 15 /-. \text { P. \& P. } 5 /-7.19 \text { mid. } \\ & \text { nection. } 45 /-. P . \& \text { P. } 8 / 6 \text {. }\end{aligned}$
12 mid .250 v . A.C. wkg. $5 / \mathrm{m}$. P. \& P. 26.613 mfd .250 v .
A.C. Wkg. 2.85 mid, 440 v , wkg., tubular. $5 / \mathrm{F}$. P. \& P. 2/-.
20kVA max. 10kV P.K. (A.C. +D.C.). 27/6. P. \& P P. $7 / 6$

DIGITAL HOUR METERS 6 figs inc. $1 / 10$ ths, $1 / 100$ ths ransformer for 240 v . A.C. operation. All in plastic case. ize 61×6 $\times 3$ in. Condition as new 45/-. P. \& P. 5/-

GARDNERS "C" CORE TRANSFORMERS Pri. tapped 200v., 220-240v. Sęc. 1, 300v. $210 \mathrm{M} / \mathrm{A}$. Sec. 2 | 400 v . $262 \mathrm{M} / \mathrm{A}$ and $6 \cdot 3 \mathrm{v} .3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{~A}, 6 \cdot 3 \mathrm{v}$. 1 A . Con |
| :--- |
| servatively rated. $79 / 6$. Carr. $10 / \mathrm{-}$. | Sec. 6.3v. $3 \mathrm{~A}, 6.3 \mathrm{v}$. 2A. i7/6. P. \& P. 4/6. Pri. T. 200-240v Sec. 400 v . $25 \mathrm{M} / \mathrm{A}$ and 25 v . $25 \mathrm{M} / \mathrm{A}$. $15 /$.. P. \& $\mathrm{P} .19 / 6$ Pri. T. 200-240v. Sec. T. 370 v ., 390 v ., 340 v . $6 \mathrm{M} / \mathrm{A} .10 / \mathrm{F}$.

$\mathrm{P} . \& \mathrm{P} .4 / 6$. Pri. T. $200-240 \mathrm{v}$. Sec. 6.3 v . $1.5 \mathrm{~A}, 6.3 \mathrm{v}$. 1 A , P. \& P. 4/6. Pri. T. $200-240 \mathrm{v}$. Sec. $6.3 \mathrm{v} .1 \cdot 5 \mathrm{~A}, 6.3 \mathrm{v}$. IA
$6.3 \mathrm{v} .2 .5 \mathrm{~A}, 6.3 \mathrm{v} .2 .5 \mathrm{~A}, 6.3 \mathrm{v} .0 .5 \mathrm{~A} .27 / 6$. P. \& P. $6 / 6$. Pri. $6.3 \mathrm{v} .2 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{v} .2 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{v} .0 .5 \mathrm{~A}$. $27 / 6$. P. \& P. $6 / 6$. Pri.
T . $200-240 \mathrm{v}$. Sec. $500-450-0-0450500 \mathrm{v}$. $215 \mathrm{M} / \mathrm{A} .65 / \mathrm{v}$ GILSONS POTTED TYPE. Pri. T. 200-240v. Sec. T. $760-$ $700-40-20 \mathrm{v}$. $50 \mathrm{M} / \mathrm{A} .29 / 6$. P. \& P. 4/6. Pri. 200-240v. Sec. $300-0-300 \mathrm{v} .65 \mathrm{M} / \mathrm{A} .6 .3 \mathrm{v} .4 \mathrm{~A} .25 / \mathrm{F} . \mathrm{P}$. \& P. 4/6. Pri $200-240 \mathrm{v}$, 400 v . $4 \mathrm{M} / \mathrm{A}$. 3 v . 5 A . $15 /-$. P. \& P. $4 / 6$.
PARMEKO $200-240 \mathrm{v}$. Sec. 300 v . $37 \mathrm{M} / \mathrm{A}$ ewice. 4 v . IA. 4v. 0.3A. Prl. 200-240v. Sec. tapped 65v., 130v., 195v. 85M/A. 6.3v. 5A. 6.3v. 1A. 22/6. P. 甹 P. 5/-. Pri. 230v. sec. tapped 32,
$22 / 6$. P. \& P. $5 /=$

PARMEKO ISOLATION TRANSFORMERS

 Pri. tapped $200-250 \mathrm{v}$. Sec. 200v. $50 \mathrm{M} / \mathrm{A}, 20 \mathrm{kv}$.. wkgSize 7ins. high plus 4 in . terminals, by $6 \times 6 \mathrm{ins}$.$85 / Carr$ Size
$10 / 6$.

BERCO

HEAVY DUTY WIRE WOUND RESISTORS Single tube slider 1000Ω IA. 47/6. Carr. 8/6. 30Ω I. 25A,
right-angled geared drive. 19/6. P. \& P. 4/6. Single zube right-angled geared drive. 19/6. P. \& P. S/6. Single sube
geared drive 782Ω IA. $52 / 6$. Carr. B/6. Single tube fixed $45+12 \Omega 6 \cdot 5 / 4 \mathrm{~A}, 27 / 6$. P. \& P. 6/6. Single tube adjustable $57.2 \Omega 2,8 A .27 / 6$. P. \& P. 5/6. Single tube fixed 71.5Ω $2.8 \mathrm{~A} .25 / \% \mathrm{P} . \& \mathrm{P} .5 / 6$. Single tube adjustable $0.6 \Omega 16 \mathrm{~A}$.
 1/6.

TEDDINGTON AIR PRESSURE SWITCHES. Type TE/A/A3. Single pole change over $15 \mathrm{mp}, 250 \mathrm{v}$. A.C. switch concacts, approx. $\frac{1}{2} \mathrm{lb}$. pressure. 3 in . dia. $17 / 6$. P. \& P. 3/6.

TEDDINGTON REFRIGERATION THERMOSTATS. Type QJ with control knob. 15/-. P. \& P. 3/6.
SMITHS 5 YNCHRONOUS MOTOR5. 22-28v. A.C. I rev. per day.
VENNER 5 YNCHRONOUS GEARED MOTORS. 240 v . CRAMER CONTROLS SYNCHRONOUS GEARED CRAMER CONTROLS SYNCHRONOUS GEARED
MOTORS. $220-240 v$. A.C. 6 revs. per minute. $17 / 6$. P. \& P. $2 / 6$.

TRANSFORMERS

TRANSFORMERS, CHOKES, CAPACITORS, L.T. SUPPLY UNITS. Send 6d. stamp for latest 12 -page Price Lise.

NEWMARK SYNCHRONOUS

$220 / 240 v$. A.C. 50C. 3 watts. 6 R.P.M. Size $2 \frac{1}{2} \times 2 \times 1 t$ ins. $12 / 5$. P. \& P. $5 /-$.

WESTERSTRAND

CLOCKWOFIK TIMERS
Switeh contacts, 15 amps., 250 voles A.C. Control knob can be set between 30 secs. and 6 mins.
Brand new $17 / 6$ P. \& P. $2 / 6$.

AMERICAN WILLARD, miniature accumulators 6 v . 1.2 A.H. Size $7 \times 1 / \times 4 \mathrm{fn}$. Weight 40 z. T/6. P. : P. I/6.

LONDEX PLUG-IN RELAYS
Sealed type, 28v. D.C. Three heavy duty sllver concacts. Size $2 \times 2 \times 1$ in. Complete with base. 8\%6. P. \& P. $2 /$ -
G.P.O. 3000 TYPE RELAY (New and Boxed) 20,000 ohms Heavy Duty Coneaces. 2CC, 2M. $15 /=$ P. 8

 P. \& P. 2/ $\%$

MAGNETIC DEVICES SOLENOIDS

180 v . D.C. Approx. tin. pull. Size $1 \frac{1}{2} \times 1 / \times 1 /$ ins. $5 /-\mathrm{P}$
D.C. $7 / 6$. P. P. $1 / 6$.
A.C. 220-240v. SHADED POLE MOTORS 1,500 r.p.m. Double spindle. Length 0.9 in , and 0.6 in . Overall size $3 \times 31 \times 2 \mathrm{ins}$. New and Boxed. $10 / 6$. P. \& P. $3 / 6$.

PULLEN SHUNT WOUND 24. D.C. Type 610 H.P. I/75 r.p.m. 3,500 Cont./R. New and boxed. 15/-. P. \& P. 3/6..

BURGESS MICRO SWITCHES

Type MK 3BR/74. Norm closed or Norm open. $\frac{1}{\mathbf{z}} \mathrm{in}$. raised Press Button. $8 / 6$ for three. P. \& P. 2/6.

HONEYWELL 250v. 10A. A.C.
Lever Operated. Make or break $(3$,
tags). Three for $12 / 6$. P. \& P. $2 / \cdot$.
Many Oeher types ayailable. Many other types available.

TRANSISTORS Brand new and fully guaranteed. PLEASE NOTE:- A large number of our transistors hav

SILICON REC							
PIV	218	31.	3/3	$\begin{array}{ll}400 \\ 3 / 6 & 300 \\ 3 / 9\end{array}$	800		
3 A	3/-			$4 / 6$	6.		
6A			5/0	8/6 7/6	\%	10	
DIODES \& RECTIFIERS							
1N914	1/6	AA129	2/-	8 Y 100	4/6	OA10	1
N916	1/6	${ }_{\text {AAPI3 }}$	21.	BY103		oas	2
1007	$4 / 6$		216		$7 / 6$	OA47	,
\|S010		AAzİ	216 216	${ }^{\text {BY }} 124$	$3 / \mathrm{c}$	- A 70	$1 /$
15025	$51 /$	Baloo	21.	BY126	4/-	OA73	
1544	1/6	BA102	$6 / 6$	BY127	4/6	OA79	
15113	3/-	BAl10		BYX10	5/6		
\$120	2/6	BAlIS	$1 / 6$	BYX	91.	OABS	
121	$21 / 8$	BA144	$5 / 6$	BYZ11	716		
30	216	${ }^{\text {BAX }} 13$	218	BYZ12	516		
15132	316						
\$940	1/6	BAY3i	16	FST3/8	6/-	OA202	

MAINS TRANSFORMERS
I amp. Sec. tappings from 6 to 50 y
amp . Sec. cappings fom 6 to
amp . Sec. zappings $0.3 .5-9-17 \mathrm{v}$
2 mp . Sec. tappings $0-3.5-9-17 \mathrm{~V}$
3 ohm lsolating transformer (R.S. type choke)
SLESSEY
SL403A

FAIACHILD | $1-6$ | $6-11$ | $12+$ | MOTOROLA | \ldots |
| :--- | :--- | :--- | :--- | :--- |
| $9 / 6$ | .. | | | |

(2) Op Amp 27/6 23/:- $21 / \%$

ULLARD I.C's					
FCH 211	Hextuple OTL Inverter Gate	\cdots	\cdots	\cdots	6
FCH 221	Triple 3 Input OTL Line	..	.		28/6
FCJ 101	3 Input JK Flip Flop	\cdots	.		35/8
TAA 241	Operational Amplifier				$47 / 6$
TAA 243	Operational Amplifier	\cdots	.	.	
TAA 263	Linear A.F. Amplifier	.	.	\cdots	$18 / 6$
TAA300	Liner A.F. Amplifier	.	.	.	$47 / 6$
TAA 320	Most L.F. Pre Amplifier	.	.	\cdots	15/6
TAA350	Wideband Lim. Dill Amplifier				45/-
GENERAL ELECTAIC $27 / 6$					
PA230 L	Low Level Amplifier	.	\cdots	.	$27 / 6$
PA234	1 Watt audio Amplifier	-	.	\bullet	26/6
PA237 2	2 Watt Audio Amplifier	.	.	,	
A246 5	5 Watt Audio Amplifier	.			57/6

SPECIAL OFFER

To encourage personnel callers we are happy to offer a discount of 5% to all our customers on Saturdays only. We are happy to quote forquantity supplies to manufacturers ett. Post and Packing in U.K. 1/6; Europe 5/-; Commonwalth (Air) 13/o.

MINIATURE LOW VOLTAGE P.S.U. Variable between 6-14 V. D.C. These P.S.U. are eransistorised and stabllised, fused and protected output $4 \times 3 \times 24^{\text {mit }} 400$. Ideal unit for building inco equipment. Price 75/-. P. \& P. 2/6.

LANGBOURNE DYNAMICS TYPE 4B

Low Voltage/Hikhly Stabilised POWER SUPPLY UNIT

ariable between 3-30 v. D.C.
Variable between $3-30$ V. D.C. at A.
Fully transistorised and current limiting Fully eransistorised and current limiting
offered. BRAND NEW at only E 13.10 inclusive of P. \& P.

ADVANCE VOLT STAT CV500/31 Input 162-276 v. A.C., $50 \mathrm{c} / \mathrm{s}$. I phase out put 115 v. conscant at 410 wate. OHered
BRAND NEW at only E8. P. \& P. 15%.

ADVANCE D.C. SERIES

Output 24 V. D.C. at 5 amps. Input 200. 245 v. A.C. 15%. Fully smoothed only E 10 each.

HIGH VOLTAGE TRANSFORMERS

Input 240 V ., output 2560 V . and 2820 V . at I amp. Weight 75 lb . Price $£ 15$.

TRANSFORMERS

Suitable for P.S.U. high grade unit with 25000 Smoothing capacitators. 8
Mullard BYZ 13 Zeners. 2 Mullard BYIl4 Mulard BYZ diodes. Transformer incorporates tapped prlmary $100-250$. Output is $17-24-31-38 \mathrm{v}$. twice at 2.4 amp. Offered BRAND NEW
ONLY 80% P. \& P. $10 / 6$. ONLY 80\%. P. \& P. $10 / 6$.

NICKEL.CADMIUM BATTERIES

D.E.A.C. manufacture RS 3.5 rating 3.5 Ah 1.24 v . Size as British U2, fully recharge-
. able. Offered BRAND NEW $19 / 6$ each. P. \& P. $1 / 6$.

MALLORY DURACELL MERCURY BATTERIES TYPE TRIS3R. 4.05 V. Size $1 \frac{3}{4} \times \frac{1}{7}$ in. dia. Price 4/-. P. \& P. 6d. Also TRIS2R 2.7 v . Size 1t $\times \frac{1}{2} \mathrm{in}$. dia.
Price $3 /-$. P. \& P. 6d.

LEAD ACID BATTERIES 12 v .4 Ah. Non spillable type supplied NEW. Boxed with charging instructions. Size $4 \times 4 \times$ 4 in. Price $45 /-$ P. \& P. $4 / 6$.

OHMITE RHEOSTATS

40 ohms, 500 warts. Torodial wound on ceramic formers. BRAND NEW high quallity units. Size 5 in . dia. Price $35 /-$ each.
P. \& P. $5 / \mathrm{l}$.

MULLARD HIGH SPEED VALVE TESTER
With approx. 500 cards. Good, used condition. Ready to work. Price $£ 45$. Carriage extra.

BERCO RHEOSTATS
3000Ω AT 100 Watts
Torodial wound on ceramic former with control knob. BRAND NEW at $12 / 6$. P. \& P. 1/6.

AUDIO OSCILLATORS
 AUDIO OSCILLATORS AMERICAN TS-382/U

Covers $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ in four ranges. Output valtage I micro volt to 10 v . in seven ranges. Built in calibrator. Sine
wave O.P. is excellent over complete wave O.P. is excellent over complete
range. Supplied with transit case adaptors range. Supplied with transit case adaptors
and circuits and eransformer for 240 A.C. AS NEW. E30. P. \& P. 20/-.

RF WATTMETERS U.S.A. PATTERN ME-II/U
Power range $0-60$ wates in 2 ranges. Impedance 50 ohms. Frequency range to 500 MHz . Type of reception AM-CW-FM. Supplied with small transit case in first class condition.

WE HAVEFULL RANGE OFHIGH QUALITY OSCILLOSCOPES
Offered in FIRST CLASS condition

Solareron CD7) IS/2

Price
Solartron CD513
475
Solartron CD614

647

Solartron CDIO15.2 647 Solareron CDIO12. 685
Solartron QD910 Storage Scope Cossor 1049
Remscope Storage Scope Cossor 1076 with four plug ins. Waterman USM-2
Also Scopes by EMI, Marconi, Furzhill. Naggard, Telequipment. All instruments have been carefully overhauled, precalibrated and are offered guaranceed condition.

CAPACITANCE BRIDGE
 ELECTROLYTIC

B.P.L. Cae. No. ZD00506. Measures capacitance under full working loads (variable voltage selection). Easy to
operate. C/W voltmeter, leakage current operate. C/W voltmeter, leakage current
meter, balance indicator, discharge meter, balance indicator, discharge
switch, etc. Range 2 mld . to 2.200 mfd , switch, etc. Range 2 mid . to 2.200 mfd , A modern inserument in new condition.
and guaranteed accurate. Price $\& 35$. and guarant
P. \& P. 20/-.

MARCONI AUDIO TESTER TYPE TF894

This directly calibrated AF oscillator from $50 \mathrm{c} / \mathrm{s}$ to $12 \mathrm{kc} / \mathrm{s}$ has a maximum output of 300 mW . Into 600 ohm and is fitted with an output level meter and 600 ohm ladder attenuator of $0-50 \mathrm{~dB}$. An alternative 5,000 ohm outlet is provided and the level in each case is continuously variable. AF measurements: the voltmeter may be used for AF inputs (external) over the ranges of 0 to 80 V . in 4 ranges, providing a very dition and working order for only E 18.10 . Power supply 240 v. A.C. (internal).

WESTON RF AMP METERS O-3A Two inch flush round panel mounting, black scale white pointer these first grade meters are offere
Price 25/-. P. \& P. 2/6.

HIVOLT PORTABLE E.H.T.

Variable output from 0 to 10 kv . D.C. Megohms range 200 to 10°. A small modern completely portable instrument. Fully completely portable instrument. Fully
transistorised C / W batteries. Weight
complete 21 lb . New condition. ©35. complete 21 lb . New condition. $E 35$.

SPECIAL EQUIPMENT COOLING BLOWERS
Manufactured by Woods of Colchester. Totally-enclosed type with good airflow makes these blowers suitable for cooling T / X valves and equipment. For 115 v . A.C. operation. Supplied new and boxed. Price 60% P. \& P. 5/\%

AYO METER CALIBRATION TEST UNIT TYPE CTIS5
A modern precision instrument, giving
 A.C. -10 V. A.C. -25 V. A.C. -100 V. A.C.-
and 250 mV . A.C. Also 250 mv D.C. and 250 mV . A.C. Also 250 mv . D.C.
from internal standard cell. Internal from internal standard cell. Internal
power supply $110-240 \mathrm{v}$. A.C., contained power supply $110-240 \mathrm{v}$. A.C.ic contained
in portable carrying case. Size il $\times 8 \times 7$ in. Brand new equipment. $£ 12.10$. P. \& P. $10 / 6$.

TUNING UNITS ANAPRA
Complete RF tuning head for the APR4 receiver two types available frequency range $38-95 \mathrm{Mc} / \mathrm{s}$. Price 615 . Also Type 3. Frequency range $300 \cdot 1,000 \mathrm{Mc} / \mathrm{s}$. Price E25. Both types are supplied wish Auto Sweep Mechanism and circuit
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment the Catalogue Nos. are 2202A, $1 / 33$ A63/1; coil resiscance is 250 ohms. Complete with base, and the price is 64.19.6. Limited quantity only available.

MARCONI STANDARD

SIGNAL GENERATOR T.F. 867
Frequency range $15 \mathrm{kHz} .-30 \mathrm{mHz}$ output variable from 4 micro volts to 4 volts at 75 ohms. Built in crystal calibrator. Calibration accurancy 1%. Supplied like NEW GUARANTEED.

HEWLETT PACKARD 616A. U.H.F. SIGNAL GENERATOR Frequency, range $1.8-4 \mathrm{G} . \mathrm{Hz}$, variable ourput 0.1 micro volt to 0.223 v . into So ohm load. Pulse CW. or FM. modulaLIKE NEW.

RHODE \& SCHWARZ SPECIAL EQUIPMENTS

UHF Receiver USVD BNI523. Range $280-4600 \mathrm{MHz}$
R. \& S. Signal Generator. Frequency range $1000-1900 \mathrm{MHz}$. type BN41026.
R. \& S. ZDD Diagraph BN 3562.
R. \& S. Signa! Generator and Klystron P.S.U. Type SMPC. Range $1.7-5000 \mathrm{MHz}$.
R. \& S. Siznal Generator, range 300-1000
MHz .

Schomandle Frequency Meter. Type FDI with FDMI adaptor. Frequency range $30-900 \mathrm{Mc} / \mathrm{s}$. Recalibrated to makers' specification.

Digital voltmeters. Digital Frequency Meters to 220 MHz . Digital Wheatstone Bridges. A.C, and D.C. Millivolt meter. Crystal Calibrators.

Solartron 2 phase and 4 phase oscillators and associated equipment.

UHF Receiver R216. $19-157 \mathrm{MHz}$. FM/AM/GW C/W. P.S.U. and cables.

AR880 Receiver like new. Redifon Receiver R50M. Like new.

SOLARTRON LABORATORY

OSCILLOSCOPE TYPE 71I/S2
This magnificent scope will take pride of place in any service depa., college or university, offered at one fifth of the manufacturer's price, In perfect working order and excellent condition. Brief specification: bandwidth DC-7Mc/s.; sensicivity $3 \mathrm{mV} / \mathrm{cm}$ to $100 \mathrm{~V} / \mathrm{cm}$; sweep velocity, $0.33 \mathrm{~cm} / \mathrm{sec}$. to $3.3 \mathrm{~cm} / \mu s e c$.; X expansion variable up to $\times 10$; size 16 in .
$\times 13 \mathrm{in} . \times 27 \mathrm{in}$. deep. Price $\mathrm{C75}$.

AUDIO AMPLIFIER
 EXECUTIVE SIXTY

All solid state professional amplifier designed for studios and discotheques and G.A. systems. write for details.

HEWLETT PACKARD RF. POWER
METER-Type 431 B
Measures RF. power in 7 ranges, from 0.01 MW to 10 MW . This inserument is futly completely solid state, amall portable, current series equipment. Mains or battery powered C/W thesmistor mount either $478 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{~K} . \mathrm{Mc} / \mathrm{s}$. Supplied in good used condition with thermistor mounts.
"PPERISTALTIC PUMPS" HR FLOW INDUCER TYPE MHRE 72 L WATSON MARLOW LTD.
These very versatile pumps have facilities for two feed lines. The pumps are standard type but less variable speed control.
deally suitable for highly corrosive Ideally suitable for highly corrosive
liquids. Offered as new for A.C. mains operation, at the greatly reduced price of $\mathbf{6 2 4 . 1 0}$. Post/packing 10%..$~$

HIGH VALUE RESISTANCE BOX TYPE R.J003
Specification:
Range: $0.01-11.10$ Megchm in 0.01 Megohm divisions. Accuracy: 0.05%. Maximum power rating: 0.1 W . per step. List price $\mathbf{£ 6 0}$. OUR PRICE $\mathbf{E 2 2}$. 10 .

MUTUAL INDUCTANCE
 BOX TYPER. 7005

Specification:
Range: $0.11 \cdot 110 \mathrm{mH}$ in 0.002 mH divisions. Accuracy:

$$
\pm\left(0.3 \times \frac{0.012}{M}\right) \%
$$

where $M=$ value of mutual inductance in mH set on the box. Frequency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decades extept $\mathrm{XI}=0.1 .5$ Kc/s. Maximum current: 0.5 A for decades IA for variometer (both primary and List price $\mathbf{6} 65$. OUR PRICE $\mathbf{6 2 6 . 1 0 .}$

PORTABLE WHEATSTONE BRIDGE Specification:
Type: Moving Coil Galvanometer. Ranges: 10.05 to 5 ohms 20.5 to 50 ohms 35 to 500 ohms 450 to 5,000 chms 5500 to 50,000 ohms. Scales: switched. Slidewire: 0.5 to 50. Galvanometer Scale: $10-0-10$. Case: Moulded plastic. Internal Source: 4 V . dry battery. Operating temperature
+10 to $+35^{\circ} \mathrm{C}$. Operating Humidity: +10 to +35 C. Operating Humidity:
Up to 80% R.H. Dimensions: 200×110 $\times 65 \mathrm{~mm}$. Weight: 0.9 kg . List price $E 25$. OUR PRICE E9.19.6.

HUGE SELECTION OF TRANS-RADIO R.F. CONNECTORS, ALL NEW AND BOXED SEND S.A.E. FOR LIST

AlSO B.N.C. AND PLESSEY CONNECTORS

$$
\begin{aligned}
& \frac{1^{\prime \prime}}{2} \text { AMPEX TAPE } \\
& \text { 2,400 ft. on IBM spool. } \\
& \text { Supplied in excellent } \\
& \text { condition, complete with } \\
& \text { transparent plastic spool } \\
& \text { case. Ideal for video } \\
& \text { and audio. } 40 /- \text { per } \\
& \text { spool, p. \& p. } 5 / 6 d . \\
& \text { As above but lubricated, } \\
& 50 /- \text { per spool, p. \& p. } \\
& 5 / 6 \mathrm{~d} \text {. Large discounts on } \\
& \text { quantity. } \\
& \text { MIXED COMPONENT } \\
& \text { PACKS }
\end{aligned}
$$

ISOLATING/STEP DOWN

 TRANSFORMERPrimary 0, 240v., Sec. 0, 115, 240 v .10 a . Ideal for workshop supply, only $6^{\prime \prime} \times 7^{\prime \prime} \times 7^{\prime \prime}$. £8, carr. 20/.

RELAY OFFER

Single pole changeover. $2^{\prime \prime}$ $\times 0.6^{\prime \prime} \times 0.75^{\prime \prime}$. 50v. $2.5 \mathrm{~K} \Omega$ coil, operates well on 24 v . 8 for \&1.
5,000 available. P. \& p. 1/6d.

250 mixed resistors, $\frac{1}{4} \& \frac{1}{2}$ watt. 150 mixed Hi Stabs, $\frac{1}{4}, \frac{1}{2} \& 1$ watt. 5% or better. Size 0 Jiffy Bag full of mixed capacitors. Size 0 Jiffy Bag full of mixed components. All same price: 12/6d. per pack, p. \& p. 1/6d.

EX-COMPUTER
 POWER SUPPLIES

Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10 mv . and regulation better than 1%. Over voltage protection on all except $24 v$. units.
We offer the following types:
$6 v$. 8a. £10. 20 v .15 a . £15.
6v.15a. £14. 30 v . 7a. £12.
12 v .20 a . £16. 24v. 4a. £14. Carr. 15/- per unit.

1,750 COMPONENTS FOR 65/- 7 ?
 YES, QUITE TRUE, READ ON

bUMPER BARGAIN PARCEL. We guarantee that this percel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN \& PNP germanium. audio and switching types-data supplied). switching types-datasupplied).
The rest of the parcel is made The rest of the parcel is made
up with: Resistors 5% or better up with: Resistors 5% or better
(including some 1%) mainly metal oxide, carbon film, and composition types. Mainly i \& t watt . . . diodes, miniature silicon types OA90, OA91, OA95, IS 130 eto. . . . eapacitors including tantalum, electrolytics, ceramics \& polyesters. inductors, a selection of values inductors, a selection of values transformer, trimpot etc. etc. . . . These are all miniature, up to date, professional, top quality components. Don't miss this, one of our best offers yet!! Price, 65/- post paid U.K. New Zealand 20/- post \& packing. Limited stocks only.

POWER TRANSIS- 750 1 Hinductors $5 /$-doz. TORS EX EAMEL. Sim.
to OC28, 4 for 10. to 0 OC28. ${ }^{4}$ for 10/-
p. .100 for 610. p. \& D. $1 /$-. THERMOSTATS. I'
$\times t^{\prime \prime} \times 1 t^{\circ}, 0 . C$. above
$120^{\circ} \mathrm{F} .1 \nmid \mathrm{a} .250 \mathrm{v} .5 / \mathrm{ea}$.

REED SWITCHES
Giam encased. switches operated by external mag-net-gold welded contacts. Mianeter. Will make and breat up to ts up to 300 volts. Price $2 / 6$ each. $24 /$ - dozen.

MINIATURE GLASS NEONS 12/6 doz.

TRIM POTS on "2" $\times 4^{\circ} \mathrm{bds}$. Ta. caps, and other components. $100 \mathrm{n}, 5000,15 \mathrm{~K}, 20 \mathrm{~K}$. Please
state requirements. 5 for $10 /-+2 / \cdot \mathrm{p}$. \& D .

9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET 872, 3 GET 872B, 1 GET 875. All long leaded'on panels $13^{\circ} \times 4^{*} .2$ for $10 /-$ p. \& p. $1 / 6 \mathrm{~d}$. 4 for 20/. Post free.

LONG ARM TOGGLE SWITCHES EX EQPT

 SPGT I3/bd. PER DOZ. P. \& P $\begin{array}{ll}\text { SPST } 13 / 6 \mathrm{~d} . \text { PER DOZ. } & \text { P. \& P. } P . \\ \text { DPST } 15 / 6 \mathrm{~d} . \text { PER DOZ. } & 1 / 6 \mathrm{~d} .\end{array}$GIANT PANELS $51^{\circ} \times 4^{2} \mathrm{mln}$. 20 transistors. $9 \times 56 \mu \mathrm{H}$. Inductors. 2/- p. \& p.
As above. only 21 transistors, 70 diodes. 62 min . $1 / 10 \mathrm{thW}$ resistors. 3 for $25 /=$. p. \& D. $2 / \%$

12v. 4a. POWER SUPPLY Brand new. welghs 11 lb. Constant voltage tranaformer. input 0 - 112.5 - 123.5 - 195 . 220 - 235 v ., produces 12 v .48 . capacitor smoothed output. 69.10.0. plus 10/- carr.

LARGE CAPACITY

 ELECTROLYTICS. tifn. 2 in . diam. Screw terminals. Top quality Gernan munufacture. Will withstand short circuit discharge.4,000 LF 72V d.c. wikg. 7/6 $16,000 \mu \mathrm{~F}$ 12V d.c. wikg. 6/-

QUANTITIES AYAILABLE EXTRACTOR/BLOWER FANS 100 c.f.m. $4 \frac{1}{2} \times 4 \frac{1}{} \times 2 \mathrm{in}$. 2800 r.p.m.
240 v . A.C. Prectsion made ln West Germany by Papet. These Fans are the beat svailable. Genuine bargain at 50% each.

BULK COMPONENTS 0.1 mfd 400 V Sprague, plaatic. 0.22 mfd 240 V Sprague. polyester. Both
 per 1,000 .

Send s.s.e. for samples.

DIODES EX EQPT, SILICON 150 PIV 10 Amp. 4 for $10 /$ 150 PIV $20 \mathrm{Amp}, 4$ for 20/400 PIV $35 \mathrm{Amp}, 4$ for $45 /$.

KEYTRONICS,

52 Earls Court Rd., London, W. 8 Tel. $01-4788499$
MAIL ORDER ONLY. Retall and Trade supplìd. Export enquiries particulary welcome.
S.A.E. FOR LIST

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, $£ 3 / 10 /-$ a set, post $7 / 6$; SPEAKERS: new, $£ 3$ each, post $10 /-$. HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post $5 /$-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils $13 \& 14$; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M. 980344 , $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., $£ 2$ each, $4 /$ - post. Output transformers 901666 -501 27/6 each, 4/- post.

- Available with Receiver only.
S.A.E. for all enquiries. If wishing to call at
Stores, please telephone for oppointment.

> HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing
control. AVC and signal strength meter. Complete HRO 5 SET (Receiver, control, AVC and signal strength meter. Complete HRO 5T SET (Receiver, Set of 5 Coils \& Power Unit) for $£ 27 / 10 /-$, carr. $30 /-$
> COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $\mathbf{\varepsilon 5} / 10 /$ - each, post 5/-.
> COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approz 25W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition-£3/10/-each, 10/post.
> Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

> AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $\& 3$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $83 / 10 /-$ each, $10 /-$ post.
> RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each; (second hand) £20.0.0 each, good condition, carr. $15 /$ - both types.
> MARCONI RECEIVER 1475 type 88: $1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. $15 /=$.
> RACAL EQUIPMENT: Frequency Meter type SA20: £35 each, carr. £1. Frequency Counter type SA21: 265 each, carr. 30/-. Diversity Switching Unit type MA168: £35 each, post 10/-. Converter Frequency Blectronic VHF Type SA. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$, £40 each, carr. £1.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $66 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25/* each, post $2 /-$.
CONDENSERS: $150 \mathrm{mfd}, 300 \mathrm{v}$ A.C., $\mathrm{f7} / 10 /-$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$
 $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. Wkg., $15 /-$ each, post $5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6 \mathrm{each}$, post $2 / 6$.
$10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6 \mathrm{each}$, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$ $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg, 13 each, post $7 / 6$. $2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., £2 each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mfd . MICA 2.5 Kv . Price £ 1 for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v} \mathbf{w k g}$. $£ 3.15 .0$ each, $10 /-$ post.
AVO MULTIRANGE No. 1 EL.ECTRONIC TEST SET: £25 each, carr. £1.
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ - carr.
COSSOR 1035 OSCILIOSCOPE, $£ 30$ each, $30 /-$ carr
COSSOR 1035 OSCILIOSCOPE, £30 each, $30 /-$ carr.
COSSOR 1049 Mk. 111, £45 each, $30 /$ carr.
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays (a) 50 ohms with $1 \mathrm{M} ., \mathrm{E} 2$ each, $6 /-$ post.
12 Small American Relays, mixed types 12, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m. 30/-each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., £2 each, 5/- post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. $25 \mathrm{lbs} .$, rating intermittent, price $£ 3$ each, post 5/-.
SYNCHROS : and other special purpose motors available. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /$-, post $5 /-$
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $\$ 7 / 10 /-$, $£ 1$ carriage.
FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, 60-
$\begin{aligned} & 95 \mathrm{Mc} / \mathrm{s} \text {. AMERICAN EQUIPMENT: BC-640 Transmitter, 100-156 } \\ & \mathrm{Mc} / \mathrm{s} .50 \text { watt output. For } 110 \text { or } 230 \mathrm{v} \text {. operation. ARC } 27 \text { trans-ceivers, }\end{aligned}$
$\begin{aligned} & \mathrm{Mc} / \mathrm{s} ., 50 \text { watt output. For } 110 \text { or } 230 \mathrm{v} \text {. operation. ARC } 27 \text { trans-ceivers, } \\ & 28 \mathrm{v} \text {. D.C. input. Also have associated equipment. BC- } 375 \text { Transmitter. }\end{aligned}$
28 v. D.C. input. Also have associated equipment. BC-375 Transmitter.
GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical
CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast
$\begin{aligned} & \text { Erection Kits, 1186/GRC; Directional Antenna CRD. } 6 \text {; Comparator Unit, } \\ & \text { CM. } 23 \text {; Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth }\end{aligned}$
Control Units, 260/CRD. Test Set URM.44, complete with Signal Generator
TS.622/U.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post $6 /$.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ $2 \mathrm{amps} ., ~ £ 2 / 10 /-$ each, carr. $12 / 6$. AUTO TRANSFORMER: 230-115 v.; 1,000 w. \&5 each, cart. 12/6. 230-115 v.; 300VA, es each, carr. 10/-.
OHMITE VARIABLE RESISTOR: 5 ohms , $5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps. Price (either type) £2 each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output (a) 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounted in 19 in . panel, $\mathbf{~} 6 / 10 /$ - each, $£ 1$ carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24 \mathrm{~s} ;$ complete with
filament transformer $230 \mathrm{v} . \mathrm{A} . \mathrm{C}$. Mounted in 19 in . panel, ©4/10/-each, $15 /-$ carr.

POWER UNTT: 110 v. or 230 v. input switched; 28 v.@ 45 amps. D.C. output. Wt. approx. 100 lbs , £ $17 / 10 /-$ each, $30 /-\mathrm{carr}$. SMOOTHING UNITS suitable for above $£ 7 / 10 /-$ each, $15 /-$ carr.
DE-ICER CONTROLLLER MK, MI: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor 20-30 $\%$. 12 r.p.m.; geared to two 30 -way stud switches and two Ledex
relay etc., sealed in steel case ($4 \times 5 \times 7$ ins.) \& each, post $7 / 6$.

MODULATOR UNIT: 50 watt, part of BC- 640 , complete with 2×811 valves, microphone and modulator transformers etc. £7/10/- each, 15/- carr.

ADVANCE TEST EQUIPMENT: TT1S Transistor Tester (CT472) £37/10/- each; VM77C Valve Voltmeter $£ 40$ each. Carr. 10/- extra per item.

NIFE BATTERIES: 4 v .160 amps , new, in cases, $£ 20$ each, $£ 110 /$ - carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 30/- each, postage $5 / \mathrm{F}$.
UNISELECTORS (ex equipment): 5 Bank, $50 \mathrm{Way}, 75$ ohm Coil, alternate wipe, £2/5/- each, post 4/-.
FREQUENCY METERS: BC-221, meter only \&30 each, BC-221 complete with stabilised power supply £35 each, carr. 15/-. LM13, 125-20,000 Kc/s., £25 each, carr. $15 /-$ TS. $175 / \mathrm{U}, ~ £ 75$ each, carr. £1. TS $323 / \mathrm{UR}, 20-450 \mathrm{Mc} / \mathrm{s} ., \mathrm{£} 75$ each, carr.
$15 /-. \mathrm{FR}-67 \mathrm{U}$: This instrument is direct reading and the results are presented 15/-. FR-67/U: This instrument is direct reading and the results are presented
directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v.;} 50 / 60 \mathrm{c} / \mathrm{s}$. , £ 100 each, carr. £1. CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$. , directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v}$. D.C. $£ 12 / 10 /$-each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, £3/10/-each, post 7/6.
APNI ALTIMETER TRANS.IREC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price 83 each. carr. 10/-.

CANADIAN C52 TRANS/REC. Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc,s power input 12 V . D.C., new cond., complete set $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /$-. Used power units in working order $£ 2 / 5 / \%$. Carr $10 / \%$.
AVOMETERS: Model 47A, \&10 each, 10/- post. Excellent secondhand cond. (meters only).
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% \mathrm{\$ 3}$ each, $5 /-$ post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3 / 10 /-$ each, $5 /-$ post.
TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . E 5 each $+10 /$ - carr. Or f 9 for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Blectronic
Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "HJ" female
connectors fitted to receive UG-21/U serics plugs. New in ctns. $86 / 10 /-$ each connectors fitted to receive UG-21/U serics plugs. New in ctns., f8/to/- each,
post $7 / 6$. CO-AXIAL SWITCH-Mnftrs. Transco Products Irc., Type post 7/6. CO-AXIAL. SWITCH-Mnftrs. Transco Products Irc., Type Type M1460-4. (New) £6/10/-each, $4 / 6$ post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, 2.0-10.0 KMC/SEC. (New) 5 each, post 4/-. FIXED ATTENU-
ATOR: Type $1157 \mathrm{~S}-1$, (new) $\& 6$ each, post $5 /-$. ATOR: Type $1157 \mathrm{~S}-1$, (new) £ 6 each, post 5/-.

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

FREE!

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS
OVER 14

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72,
81 , etc.
POST \& PACKIMGICE 15 PER 1000

XB PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents so OC200-1, 2N706a, BSY27/29, BSY9SA

PRICE E4-5 PER 500
PRICE E8 PER 1000
POST \& PACKING $2 / 6$ U.K.
XC PAK
Silicón diodes miniature glass types, finished black with!polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, ete.

PRICE E4-10 PER 1000
POST \& PACKING $2 / 6$ U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

LOOK! TRANSISTORS ONLY 1/- EACH

TYPE A
PNP SILICON ALLOY TO- 5 CAN Spec:-

ICER AT VCE $=20 \mathrm{v}$ 1 mA MAX. HFE. $15-100$ llitue are of the 25300 type which are of the $2 S 300$ type which
and direct equivalent to the

TYPE B

PNP SILICON plastic encapsulation Spec:- icer at vce $=10 \mathrm{v}$

1 mA MAX. HFE. 10-200 These are of the 2 N3702/3 and 2N05059/62 rans.

TYPE C
NPN SILICON TO-18 CAN
Spec:- ICER AT VCE $=20 \mathrm{v}$ ImAMAX. HFE 50.900
These ere simliar to the BC108/109 types.

NEW UNMARKED UNTESTED PAKS integrated circuits. Data \& CIRCUITS OF TYPES.

| -12 | 10 SUPLIED WITH OREERS |
| :--- | :--- | :--- |

B8O	8	DUAL TRANS. MATCHED O/P
PAIRS NPL-SIL. INTO 5 CAN.		

$\begin{array}{ll}10 \\ 882 & \text { OC45, OC81D \& OC81 TRANS } \\ \text { MULLARD GLASS TYPE }\end{array} 10 /-$

$$
200 \text { TRANSISTORS. MAKER }
$$

REJECTS. NPN-PNP SIL
$883 \quad 200^{\text {G }}$
B84 100 SILICON DIODES DO- 7 GLASS
10/-

866150 DIODES MIN GLASS TYPE
B86 50 IN914 \& IN9 16 TYPES

| B87 100 GERM, ONP TRANS EQUIV. |
| :--- | 10/-

$\frac{\text { B87 } 100 \text { TO OC44. OC45, OC81. ETC. }}{\text { SILTRANS. NPN. PNP. EOUTV. }}$
B88 50 TO OC200/1, 2N706A.
BSY95A. ETC.
$\begin{array}{ll}\text { B6O } 10 & 7 \text { WATT ZENER DIODES, } \\ \text { MIXED VOLTAGES }\end{array}$
$\begin{array}{ll} \\ H 516 & 1 \text { AMP. PLASTIC } \\ 50-1000 \text { VOLTS }\end{array}$
250 mW . ZENER DIODES
H6 40 DO. 7 MIN . GLASS TYPE
10%
10\% 10/-

$\begin{aligned} & \text { NEW } \\ & 82 \quad 4 \end{aligned}$	STED \& GUARANTEED Photo cells, sun batteries. INC. BOOK OF INSTRUCTIONS	
877	AD161-AD162 NPN/PNP TRANS COMP. OUTPUT PAIR	10\%
88110	REED SWITCHES,MIXED TYPES LARGE \& SMALL	
889	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400 ODARK 1 M 0	10\%
8918	NKT163/164 PNR GERM. TO EQUIVALENT TO OC44. OC45	10\%
B92 4	NPN SIL. TRANS. AO6 = BSX 2 N 2369.500 MHz .360 mW	10/-
893	GET113 TRANS. EQU ACY17-21 PNP GERM	10/-
B96 5	2N3136 PNP SIL. TRANS. TO- 18 HPE $100-300 \mathrm{IC}, 600 \mathrm{~mA}$. 200 MHz	10/-
89810	XB112 \& XB102 EQUIV. TO AC126 AC156. OC81/2. OC71/2. NK\$271. ETC.	10/-
200	CAPACITORS ELECTROLYTICS. paper, Silver mica, etc. POSTAGE ON THIS PAK $2 / 6$	10/-
250	MIXED RESISTORS POST \& PACKING 2	10
40	WIREWOUNO RESISTOAS MIXED TYPES \& VALUES. POSTAGE $1 / 6$	

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev 20/-each

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 / \&$ post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

VARIOUS. CONTACTS AND
8 for
COIL RESISTANCES.
No individual SElection.
POST \& PACKING $5 /$ -

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

glectro-Yed Sales

SCHRACK ROTARY STEPPING RELAY RT304 48 v . coil (28 ohm). The relay has 48 basic segments shorted in step by the 4 sweep contacts to 4 poleplates (banks of 12). There are 2 secondary switches: (1) one c/o H/Duey contact set which changes over and back with each step; (2) two H/Duty changeovers which changeover on each 12th following pulse. Size: Base $3 \frac{1}{20}^{\prime \prime} \times 1 \frac{z}{20}^{\prime \prime} \times 4 \frac{1}{c}^{\prime \prime}$ high. New in maker's packing, also, as above, but 110 v . $(1,290 \mathrm{ohm}$ coil), $\mathbf{E 4 . 1 5 . 0 \text { each. }}$
Welwyn high value Resistors Type GA 36501. Values between 9.4 and $10.9 \mathrm{kllo-meg} \pm 1 \%$, glass
encapsulated $15 / \%$. encapsulated 15%.
Victoreen "Hi-Meg" Resistors. One value only
$50,000 \mathrm{meg}+2 \%$, glass encapsulated $15 /$. .
Precision Motor-driven Potentiometer
By "Precision Line" (U.S.A.). Con-
contact wipers set at $90^{\circ} \mathrm{C} . \mathrm{W}$. resistance 300 ohm only, $\pm 5 \%$ LIN
$\pm 0.5 \%$ ball bearing spindle column. Size: dia. I $13 / 32^{\circ}$, height $11 / 32^{\circ}$, spindle lengrh $11^{\prime} / 32^{\circ}$ by $\frac{1}{2}^{\prime \prime}$ dia. These potentiometers were purchased by the importer at a cost of approx. 25 each. Our price
E4.10.0.
 \&4.10.0.

English Electric $\frac{1}{8}$ h.p. Motors. 240v. single-phase, standard foot mounted, 1,425 r.p.m., continuous rating. 64.15.0. Carrlage 20/-.
Isolation Transformers. 1 to 1 ratio. 240 v . input, 240 v .
 Plus EI carriage.

NEW HYSTERESIS MOTORS BY WALTER JONES. Type 14050/12, 240v. 50 c/s 1500 RPM cont. rating, output 2.0 oz /in. Size: Length (less spindle) 31". Width $21^{\prime \prime} \times 21^{\prime \prime}$. Spindle $1^{\prime \prime} \times 3 / 16^{\prime \prime}$. Weighe 3 lb . Maker's price in region of 222.10 .0 . Our price E6.10.0. each.

K.L.G. Sealed Terminals. Type TLSi AA, overall Type TLSI BB, overall length口-F
"Parvalux" Reversible 100 RPM Geared Motor Type S.D.14, 230/250v. A.C. $22 \mathrm{lb} / / \mathrm{in}$. Standard foot mounted, variable angle final drive. Removable 9. tooth chain spiggot on $3 / 16^{*}$
splndle. list class condition. 67.10.0 each. P. \& P. 10/-

Motor Driven Variable Voltage Transformers by Ohmite
(U.S.A.). Input $120 / 240 \mathrm{v}$., $50 / 60$. c.p.s. Output $0-240 \mathrm{v}$. at ' 480 v.a A reversible 115 vv a.c. geared motor drives the contact sweep arm in the
direction required. There is a micro direction required. There is a micro
switch mounted at each end of the track which is camoperated and incended to be connected as a safety-stop. First class condition. E8.15.0. P. \& P. 10/-.

Brand new "Discus" Centrifugal Blower by Watkins Watson, 240 V .
A.E.I. motor cont. 2,850 r.p.m., overall diam. ion, outiet flange 2^{-}i.D. additional coupling mounting flange supplied. Limited supply. E9.10.0. Carrlage © 1.0 .0 .

New beautifully-made 3 ch Neat action, either locking
or spring-return, as required determined by reversing fix-ing-plate. Attractive plastic prestle. Available red, zreen, grey, cream. Limited number only. $17 / 6$ each.
EICCTMTITHE SAIES

THORN DIGITAL INDICATOR designed as a modular unit for easy mounting where Ist class numerical readout is required. Easily read through a wide angle of view and under bright ambient lighting. 12 characters, 0 to 9, decimal point and minus sign.
Characters $13 / 16^{\circ}$ high engraved on acrylle slides and Individually on acrylic slides and ndividually lamps. Overall size of front panel 43° high $\times 18^{\prime \prime}$ overall depth 1° finished in matt black supplied with 12 lamps, choice of following ratings-6v. IA. or $12-14 \mathrm{v}$. .OBA. E4.0.0 each, spare lamps 24/- per dozen.
ATLAS SUB-MINIATURE LAMPS type Lil22 and Lil23-a high efficient and low power excellent light-output
and 10 Ratings. 5 v .
$60 \mathrm{ma} .35 \pm 25 \%$ lumens. Lif expect$60 \mathrm{ma}, 35 \pm 25 \%$ lumens. Life expect-
ancy 60,000 hours or at 6 v. 70 ma.
$.75 \pm 25 \%$ lumens 5,000 hours. Dimen. sions: Uncapped $6.3 \times 3.1 \mathrm{~mm}$. leads $9.1 \times 3.1 \mathrm{~mm}$. Ideal for instrument lighting normally sold in excess of $12 /$ each, our price $30 /$ per dozen or boxes of
50 at $\mathbb{E S}$ per bax.

THORN ILLUMINATED PRESS SWITCH for 250 v . operation. M.E.S. Pressure on cap completes a second
circuit. Very robust. Length 44.5 mm . dia. 30.5 mm , in amber, green or red 10/6 each.

4tv. to 9v. Solenoid. I* pull. Very powerful, length 1f", dia. $11 / 16^{\prime \prime}$. $10 /$ each.
"Tansitor" (U.S.A.) Tantalum, Wet Sintered Anode
 D.C. size: ${ }^{\circ}$ long $x y^{*}$ diar 150 UF. 30 v . D.C. I long $x i^{\circ}$ dia. MOD. Alt types 5/- each. Also few only, Tansistor "MiCRO-
MODULE capaciors 0.2 Mfd. $15 v$. Wire-end ded, size: $3 / 32^{\circ}$ dla. (disc) $7 /$ eleach.
American "Powerstat" Variable Voltage Transformer by Superior Electric Co. Input 120 v . $50 / 60$ c.p.s. Output $0-120 \mathrm{v}$, at 2.25 amps. if spindle with dia. $\times 2^{\prime \prime}$ long. Flrst class condition. $\mathbf{2 2 . 1 5 . 0 \text { . P. \& P. } 5 / \text { -. }}$

Berco Rotary "Regavolt," variable voltage transformers input 240 v . $50 / 60 \mathrm{cps}$., output 240 V . C.T. at 6 amps. Not new but
c8.10.0. P. \& C. 10%.

Gardner Transformer Type I.T.N. 876 (new). Enclosed in ventilated metal case. Prim $200 / 250$ sec.
$2 \times 12 \mathrm{v}$. windings rated 4 amps each (96 va . in series/ $2 \times 12 \mathrm{v}$, windings
parallel). $\mathbf{E 3 . 2 . 6}$.
S.T.C. Midget Relay Type 4190 GC. (new). 2 changeovers, $12 \mathrm{v} .40 \mathrm{~m} . \mathrm{a}$. coil (170 ohms). $10 / 6$ each.
fackson Air-Spaced Trimmers Type C803. Preset locking type, ceramic end-plate, 2 -hole fixing. 3-10 p.f., 2/6. 4-20 p.f., 2/6. 4-60 p.f., 4/-. 5-100 p.f., 4/-. (Minimum order any 4 pleces.)

Advance Constant Voltage Transformer (new). Input $190-260 v$. Output volts 12 R.M.S. at 50 v.a. 64.19.6. Carriage $10 /-$

Mullard Geiger Muller Tubes Type MX115 (new)
Max threshold voltage 370 . Min. plateau length (volas) 100 . Active length 44 mm . Wall thickness $375 \mathrm{M} . \mathrm{G} . / \mathrm{sq} . \mathrm{cm}$. Two-pin base. $£ 3.10 .0$.

Dubilier Nitrozol Capacizora, ${ }^{24}$ mid. at
Size (approx.) $41^{\text {g }}$ high $\times 31^{\circ} \times 21^{\circ} .10 /=$ each.
Mallory Tubular Capacitor, with mounting clip. 1,000
mfd. 45 v . D.C. Size $2 \mathbf{t}^{\prime}$ long by 1° dia. $7 / 6$ each.
WHERE NO CARRIAGE CHARGE IS NDICATED PRICE IS INCLUSIVE.

SYLYANIA MAGNETIC SWITCH-a magnetically activated switch operating in a vacuum. Switch speed-4ms. temperature -54 to + $200^{\circ} \mathrm{C}$. Silver coneacts normally closed rated 3 amps. at 120 v . 1.5 amp . at 240 v . $10 /$ e each. 44.10.0 per dozen. Special quotations for 100 or over. Reference Magnets available $1 / 6$ each.

SYLVANIA CIRCUIT BREAKERS gas filled providing a fast thermal response between 80° and $180^{\circ} \mathrm{C}$. Will withstand pressures up to $2,000 \mathrm{lb} . \mathrm{sq} . / \mathrm{in}$. rated 10 mpp . at 240 v . continuous. Fault currents of 28 amps. at 120 v . or 13 amp . at 240 v . silver contacts. Supplled in any of the following opening temperatures (degs. cent.) $80,85,95,100,105,110,120,125$, $130,135,140,145,150,155,160,170,175$, 180. 10/- each or $\mathbf{4} .10 .0$ per dozen.

MINIATURE""LATCH MASTER' RELAY 6, 12 , or 24v. D.C. operation. One make one 30 v . Once current is applied relay remains latehed until input polarity is reversed. Manufactured for high acceleration requirements by Sperry Gyroscope Co. Size: Length 7^{2}, dia. 9/16" (including mount). Please state vertical or horizontal mount and voltage. ©2.5.0 each.

New "Magnetic Devices" solenoid 240v. A.C. Type 42117, I to 3 lb . pull, frame size $11^{\prime \prime} x$ 18"×1". 20/- each.

New 75-0-75 Microammeter by Slfam.

 750 ohm movement, slear reading, $5 \mu \mathrm{a}$ divisions x ${ }^{1 /}$; plastic front, projection $1^{1 \prime}$ (capering forward). Size: $43^{\prime \prime} \times 33^{\prime \prime}, 57 / 6$ each.

MINIATURE
MINIATURE
B.P.L. $500-0 / 500$ Micro-Ammeter. 13/16" Diam.
scale. Through-Pand scale. Through-Panel mounting, 45/-. "AUTOMATIC ELECTRIC ENCLOSED RELAYS
6v. $50 \Omega 2 \mathrm{c} / \mathrm{o}, 12 / \mathrm{s}$
$24 \mathrm{v} .470 \Omega 4 \mathrm{c} / \mathrm{o}, 13 / 6$ $48 \mathrm{v} .2,780 \Omega 4 \mathrm{c} / \mathrm{o}, 13 / 6$ $48 \mathrm{v} .1,260 \Omega 6 \mathrm{c} / \mathrm{o}, 15 /=$

New "Croydon" 1/50th HP, cone. raking' 240v. A.C. motor, 1500 RPM, foot mounted Size: 3 in $^{\prime \prime}$ high $\times 5^{\prime \prime}$ long + spindle length 15 " $\times f^{\prime \prime}$ dia. A really reversible motor at less than half maker's original price.
Also available identical to above but 750 r.p.m. 1/l00th h.p.
 both types $\mathbf{E 6} \mathbf{1 0 . 0}$ each.

BRAND NEW

ALT
ALTERNATORS
MANUFACTURED BY
ENGLISH ELECTRIC CO.
 Type Motor Ph. C.P.S. R.P.M.

All types same Dual outputs $\begin{array}{cccc} & \text { Ph. } & \text { C.P.S. R.P.M. } \\ 220 & 3 & 50 & 3000 \\ 380 / 440 & 3 & 60 & 3600 \\ 115 & 3 & 60 & 3600 \\ 220 & 3 & 60 & 3600\end{array}$ V.
Is below.
I
3 220 D.C.
110 D.C. 647.10.0 Each Also in stock several types of heavier duty units. Full Detil upon request.

INTEGRATED CIRCUIT AMPLIFIERS

Ca3005 RF Amplifer with lome／s bandwidth．Max．diesipation 26mw．For une as RF amplifer，balanced mixer，product detector or self－oscillating mizer．
CA3012 Wide Band Aruplifier（up to 20nc／a），auttable an tF Amplifer for VHF／FX receivera． $28 / \mathbf{-}$ CA3020 General Purpone Avidio Amplifier of 550 mW output． $30 /-$ CA303B Buffer Amplitier consinthng of two＂super－alpha＂pair of
transistors suitable for stereo plek－up syatema．
$10 /-$ The above four I．C＇s are in TOS encapsithation． Paza2 Audio Amplifer providing a max．output of 1.2 witts．65／－ PAes4 Audio Amplifer providing a max．output of I watt．27／8 Pais7 2 watts Audio Amplititer．
 TAA263 3 －stage direct coupled amplifer for use from DC to 800kc／e；70mW dissjpation Output 10mW tato 150 a lond．25／－ TAA293 3－atage amplifier with connection hrought out to the
individual Jeals．Bandwidth $800 \mathrm{kc} / \mathrm{m}$ ． 100 mW dissipation． Indifldual leads．Bandwidth $800 \mathrm{kc} / \mathrm{m}$ ． 160 mW dissipation．
Output 10 mW toto 150Ω Iomd．
$20 /-$ TAAB20 most laput stage followed by a bl－polar transistor stage． 200 m W disalpation．

13／－ TADi00 All metive components required for an A．M．Recetwer comprining mirer．oncilmeor，i．f．amplifer，a．e．c．and pre－ampiaer resistors are required and output stage for which one of the above deacritied I．C．n can be uaed．Dual nevers－In－Ithe packige． $48 /-$
Data meet avaliable for all the above 1．C．s． Data sheet avaliable for all the above
U．per data wheet if ondered separately

SILICON POWER RECTIFIERS

Wire ended．miniature，epoxy encapsulated．
iNs399 1000 p．i．r．I．SA N5408 1000 ple

BZY88 series，（Tom ZENER DIODES
 D814 series，from 7.5 V to $13.0 \mathrm{~V} \pm \mathrm{V} \pm 5 \% 340 \mathrm{mWW}$
 D81 series，from 22 V to $47 \mathrm{~V} \pm 10 \%$ s $\mathrm{W}_{\text {att }}$
DR17 Outlines：BZY series－munhature－wire ended D814－＇Top Hat＇type
D815－D817－atud mon
D815－D817－stud mounted，supplied complete with Plpane ata
supplied．

NEW TRANSISTORS ADDED TO OUR BTOCK

AC113 O／PNP LP Amplifler and Oncilntor
AC154 G／PNP Clans＇B＇Puah－pull Amplitier
ACl57 G／NPN
Class＇B＇Push－pull Amplifier
AC169 G／PNP Dlode－connected Bian Stabiliziog $\begin{array}{lll}\text { 2N } 404 & \text { G／PNP } & \text { Bwitching and O．P．} \\ \text { 2N708 } \\ \text { g／NPN } & \text { H．F．Amplifier }\end{array}$
$\begin{array}{lll}\text { 2N } 708 & \text { g／NPN } \\ \text { 2NG29 } \\ \text { B／N PN }\end{array}$ H．F．Amplifier
 $\begin{array}{ll}2 N 3414 & \mathrm{~B} / \mathrm{NPN} \text { VHF Amplifier．low voltage } \\ 2 \mathrm{~N} 3416 \\ \mathrm{~B} / \mathrm{NPN} & \text { VHY Amplifier，high voltage }\end{array}$ 2N3710 B／NPN Low Frequency Asnplifier
Twin die－cast heat sink for Tol tranalistors
BC147 Audion driver and TV circuits
BCl 48 G．P．low frequency
 BFIG5 RF nhate for AM／FM，Mixer／IT for battery sets．
plessey sla 03 A Integrated circuit UDIO AMPLIFIER Dual－in－line 10 －lead fiat packuge with heat oink at rip．Maximuta
audio output 3 matta into 7.58 wudspeaker．Circult conalsts of andio output 3 matis into 7.50 modispenker．Cireult conalsts of watt increaning to 0.5% at full output．Prejuency reaponse
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{me} / \mathrm{s}$ ．Opernting voltage 18 v ．Bulftifn overvoltage cut－out．Price，complete with appllication sheat 49／6

SILICON MATCHED DIODE PAIRS 1N4951．Two diodem in common TOY2 epocy cane．Geparate
 ind similar applications．Price $3 /-$ emet．Conside rable discount for qunatices．

MULTIMETERS TYPE 108－1T

4－range precisiot portable meter． 5,000 o．p．v．BD．C．Volt
$2.5-10-50-250-500-2000 \mathrm{~V}$ ．A．C．Volta： $10-50-100-250-500-2500 \mathrm{~V}$. ．C．current $0.5-5-50-500 \mathrm{~mA}$ ．Reaistance： $2.000-20,000$ ohmse

TYPE MFI6

D．C．Voltage range $0-0.5 \cdot 10-50-250-500 \mathrm{~V}$
A．C．Voltage range 00－10－50－250－500V．
Besiatauce rangey： $100 \mathrm{MD} \mathrm{D}-1 \mathrm{MD}$ ．The meteris alno calibrated for capnatity and output bevel measurements．Bonaltivily 2000 gV rccuracy $\pm 2.5 \%$ for D．C．and $\pm 4 \%$ for A．C．Cseasuremenh

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\&$ FOR HANDLING AND POSTAGE．

NO C．O．D．ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OLL MAIL ORDERS MUST BE SENT T
 ～ド

 onow in

FULLY GUARANTEED

FIRST QUALITY VALVES

Head Office：

44a WESTBOURNE GROVE，LONDON，W． 2

Tel．：PARK 5641／2／3 Cables：ZAERO LONDON
Retail branch（personal callers only） 85 TOTTENHAM COURT RD． LONDON W．2．Tel：LANgham 8403

A．R．B．Approved for inspection and release of electronic valves，tubes， klystrons，etc． PLEASE SEND QUARTO S．A．E．FOR YOUR FREE COPY

> 等

\section*{$|$| PD |
| :--- |
| PE |
| PE |
| PE |
| PE |
| PR |}

723A／B； $2 \mathrm{~K} 25 ; 4 \mathrm{C} 35-50 /$－paid subject to test． Please offer us your special valves and tubes
surplus to requirements． surplus to requirements．

WE WANT TO BUY：

Appolvivivenver vacaivi

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col. inch.
LINE advertisements (run-on): $8 /-$ per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract
is placed in advance.
BOX NUMBERS. Replies should be ddresed to the BOI number in the advertisement
BOX NUMBERS: Replies should be addressed to the Bo
Wireless World, Dorset House, Stams
No responsibility accepted for errors.

```
Advertisements accepted up to THURSDAY, 12 p.m., 5 th FEB. for the MARCH issue, subject to space being available.
```


electronic test engineers

Opportunities exist at our Haverhlll Plant for Electronic Test Engineers who are capable of fault finding on VHF/UHF mobile and fixed equipment. Applicants should have elther

C 8. G Final Certificate in Electronic Radio/TV Servicing
or
Telecommunications Technicians Intermediate Certificate.
The Company is the UK's leading manufacturer of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover over the next flve vears. Opportunities for promotion are therefore excellent.
The factory is situated in an expanding town and assistance with Housing through the Local Councll is possible, together with relocation expenses where appropriate.
The successful applicants will join our permanent staff and will enjoy the benefits of a Company which is offering first class financial rewards. pension and sick schemes
Please apply to
Mrs C: M. Dawe, Personnel Officer PYE TELECOMMUNICATIONS LTD Colne Valley Road, Haverhill, Suffolk.

Telephone: Haverhill 2321 Ext. 26

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102-108 Clerkenwell Road, London, E.C.1.

The development of telecommunications services in the Board has created vacancies for experienced Maintenance Technicians.
The work is extremely interesting and covers microwave and single channel radio links. telephone multiplexing equipment, mobile and personal radio systems. Data transmission systems are now being introduced and sophisticated mobile radio control systems are planned.
Candidates should have relevant experience in one or more of the above fields: knowledge of digital systems and the ability to work effectively over a wide range of equipment is desirable. They should have obtained City and Guilds (Intermediate Telecommunications) or
O.N.C. as a minimum qualification. Possession of a current driving licence is necessary.

The salary ranges are:
TECHNICIAN (II)
$£ 1.035$ to $£ 1.355$ per annum
TECHNICIAN (I)
$£ 1.210$ to $£ 1.565$ per annum
Opportunities exist for progression to scales rising to $£ 1,790$ per annum and for participation in budget engineering and system planning duties. Please apply in writing quoting reference number A 950 to the Senior Personnel Officer (Headquarters), West Midlands Gas Board, 5 Wharf Lane, Solihull.

OVERSEAS SITE INSTALLATION SUPERVISORS

This international company engaged on the design and provision of a large complex air defence and communication system for Nato with numerous sites throughout Europe is interested in meeting capable site supervisors who have had recent "on site" experience installing military radars, computers, data display and communications equipment.
As the majority of the sites are in remote areas it is essential that candidates are technically sound self reliant men, with the proved qualities of leadership and personality necessary to cope with all administrative and technical problems that can be expected to arise when managing an installation from the Civil Engineering stage through to commission.
Due to environmental conditions we can only consider men who are 100% fit and who are able to take up these assignments unaccompanied by dependants.
The appointments will be for a period of 18-24 months depending on location, conditions of service match the task and gross earnings will be in the region of $£ 5,000$ p.a.
Applications in writing should give a brief resumè of qualifications and experience and include types of installation and locations worked on, to:
Deputy Personnel Manager, Nadgeco Limited, The Centre, Feltham, Middx.

EAST AFRICAN POSTS AND TELECOMMUNICATIONS CORPORATION

GRADE 1

Abstract

to serve on contract for one tour of 24 months in the first instance. Basic salary E.A. Shgs. 24300 ($£$ Stg. 1417) a year rising to E.A. Shgs. 27780 (Approx $£$ Stg. 1620) a year plus an Inducement Allowance, normally tax free, of $£ 822-886$ a year, paid direct into officer's bank in the U.K. Gratuity 25% of total emoluments drawn. Liberal paid leave. Furnished accommodation. Overseas Installation Grant. Free passages. Contributory pension scheme a vailable in certain circumstances. Candidates, $28-45$ years, should possess the City and Guilds Intermediate Certificate (Telecomms.) plus a pass in Radio Grade 2 and must have a thorough knowledge of the installation and maintenance of HF and VHF radio equipment. A know-

ledge of microwave, carrier and telegraph equipment would be an advantage.

Selected officers' duties will be connected with the installation and maintenance of radio stations, and will involve travelling to outlying stations at a considerable distance from their headquarters, sometimes for periods of a week or more.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I., for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number MaK/690815/ WF.

COLOUR TELEVISION

LIVERPOOL CLINIC 1 MYRTLE STREET, LIVERPOOL

Applicants are invited for the post of

MEDICAL PHYSICS TECHNICIAN Grade II

in the DEPARTMENT OFNUCLEAR MEDICINE. Person appointed will be required to maintain nucleonic and electronic equipment and would be expected to assist in the design and bullding of new equipment and modifications of existing apparatus. Duties are principally in the Liverpool Clinic, but at times extend to other hospitals in the region. Possession of Higher National Certificate or equivalent is desirable. Whitley Council Conditions of Service. Salary scale $\{1,3 \mid\}$ rising to $\{1,671$ per annum.
Application forms obtainable from Personnel Section, Clatterbridge Hospital, Bebington, Wirral, Cheshire.

2788
To keep pace with our current expansion programme, we have established additional vacancies for TV engineers to join our existing teams working on a wide range of prołessional TV broadcast equipment. such as colour/monochrome TV cameras and monitors. telecine, large screen TV projectors, videotape recorders, etc.

If you are of O.N.C. standard, are prepared to travel and have recemt practical experience of professional TV equipment or colour TV receivers, we would like to hear from you. Product training will be given. Good career prospects.

Conditions of employment are attractive. Excellent and progressive salaries will be offered to competent applicants.

Apply with brief details of your experience to :

 Personnel Officer
 PYE TYT LIMITED
 Addlestone Road,
 Weybridge, Surrey.

Area interviews will be arranged H.N.C. standard with additional qualifications in control or digital techniques preferably around 30 vears and living, or prepared to work, in the Hertfordshire area. The applicants should have shown some administrative ability in project coordination, possibly in avionics. military control systems. or high speed digital control circuits. Please apply in writing and in strict confidence, NORMAN HOUSE - 105/109 STRAND - LONDON • W.C. 2 TEL•O1.836 5557

INTERTEL COLOUR TELEVISION LIMITED

have the following vacancies at their Studio at 66 Dean St., London, W. 1
Engineer in Charge of Operations
Supervisory Engineer-VTR
Senior Engineers-YTR
Engineers-YTR
Senior Engineer-Vision
Senior Engineer-Sound
Junior Lighting Director
No. 2 Cameraman
No. 3 Cameraman
Applications should be forwarded to:
The Chief Engineer, Intertel Colour Television
Ltd., Wycombe Road, Wembley, Middlesex 2800

ELECTRONIC

 TEST ENGINEERSrequired for advanced test equipment under contract to the Atomic Energy Authority. Full staff status. Excellent working conditions and every opportunity for advancement. Write or telephone:
The Personnel Manager. Hacker Radio Limited.
Norreys Orive. Cox G reen, Maidenhead. Berks. Telephone: Maidenhead 22261

Installation Engineers
 Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane. Basildon. Essex.

CONTINUOUS

 wave and Line Division based at Basildon
are growing fast. In order to keep pace with this consistent growth rate we require the following

Test Technicians
 Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complax transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit. pcm and microwave equipment.

Posts To meet our expansion requirements further posts are now available for Electronic Technicians to join International Aeradio Limited for world-wide employment.
Men joining the company may be posted to any one of our overseas stations on a 1 to 2 year tour basis and will be involved in a variety of interesting work covering the maintenance of a wide range of communications equipment.
Requirements You should have a practical knowledge of HF, VHF and UHF equipment. A knowledge of navigational aids would be an advantage. A technical qualification is also desirable.
Company is well-established and fast expanding in its activities in the fields of aviation services and communications with over 3.000 employees around the world. Excellent career prospects are open to men of ability.
Benefits include excellent tax free starting salaries. free accommodation for single men and married men with families and in addition tax free marriage, children's and education allowances and leave passages.
Opportunities are also available for cheap holiday air travel.
To apply please write stating details of age and qualifications to:
Personnel Officer (Recruitment).
INTERNATIONAL AERADIO LIMITED
aeradio house hayes road - southall middlesex

CRANFIELD

DEPARTMENT OF ELECTRICAL AND CONTROL ENGINEERING

Applications are invited from men with experience in waveguide techniques for appointment as

TECHNICAL OFFICER

in the high frequency and radar laboratories which are concerned with postgraduate teaching and research in radar, radio and microwaves. Experience in the aviation field is not essential.
Duties include supervision of the day-to-day activities in the laboratories and responsibility for the construction of specialised experimental equipment. Candidates should have passed the graduateship examination of the I.E.E., I.E.R.E., or possess a H.N.C. or equivalent qualification. Salary within scale rising to $£ 1,623$ p.a. (under review). 37 hour week of five days, generous holidays, staff superannuation and sick pay schemes, subsidised transport over a wide area.
Application form from Staff Records Officer, The College of Aeronautics, Cranfield, Bedford.

THE UNIVERSITY OF LEEDS
 SENIOR EXPERIMENTAL OFFICER

Funds have been made available from the Sainsbury Centenary Grant for the Advancement of Research and Education in Food Science for the appointment of an experienced graduate electrical (electronic) engineer or similarly qualified person to join a research group investigating the chemistry of the substances responsible for the flavour of foods, using combined gas chromatography-mass spectrometry. His main duty would be to care for the sophisticated instruments involved and to develop the instrumentation further. He would be available also for consultation by other research groups in the Department.
The appointment is for 3 years in the first instance in the range $£ 1,460-£ 1,940$, the point of entry depending on qualifications and experience. Superannuation under F.S.S.U.
Applications (three copies) stating age, qualifications and experience and naming three referees should reach Dr. H. E. Nursten, Procter Department of Food and Leather Science, The Universlty, Leeds_LS2 9JT, as sooñ as possible.

BATH UNIVERSITY OF TECHNOLOGY

ELECTRONICS TECHNICIAN

A vacancy has arisen for an Electronics Technician in the School of Engineering to assist with the development and servicing of electronic equipment and instruments. Applicants must have practical experience of wiring and electronic 'trouble-shooting'. The work is varied and interesting and offers the opportunity to become familiar with a wide range of modern electronic instruments and applications.

Starting salary in the range $£ 773-£ 1.077$ per ánnum. The post is superannuable. Application forms from Registrar (S). The University, Claverton Down, Bath, BA2 7AY, quoting reference 69/86.

2787

Science Research Council RADIO AND SPACE RESEARCH STATION

THE RADIO AND SPACE RESEARCH STATION require TECHNICIAN FOR MAINTENANCE require ${ }^{2}$ TESTING AND CALIBRATION OF ELECTRONIC EQUIPMENT intended for use in the RSRS research laboratories. Should be capable of interpreting manufacturers' speclfications, and preferably be familiar with modern test equipment and circuit techniques currently analysed, j.e. oscilloscopes, counters, signal generators, etc.
QUALIFICATIONS. Applicants should have a general experience of electronics engineering; hold an or a City and Guilds Final Technicians" Certlficate, and preferably have served a recognised engineering and preferably have served a recognised engineering with at least three years post apprenticeshlip experience.
SALARY. Salary according to age and experience in the scale of $\{1,030-\mathrm{f} \mid, \$ 50$. Age 26 years $\{1,280$.

Apply: The Secretary,
Radio and Space Research Station, Ditton Park, SLOUGH, Bucks. Telephone SLOUGH2411
Closing date 20.2.70.

There is scope,variety and responsibility as a RADIO TECHNICIAN in Air Traffic Control

Join the National Air Traffic Control Service of the Board of Trade as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.

Entrance qualifications: you should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.

Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction. automatic landing systems, communications and closed-circuit television. Work is based on Civil Airports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.

Salary: $£ 985$ (at 19) to $£ 1,295$ (at 25 or over): scale maximum $£ 1,500$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

[^14]RESEARCH and DEVELOPMENT

ELECTRONIC ENGINEERS

... OUR WORK

Expanding exports and the increasing complexity of our products have intensified our development programmes for digital and analogue computers. linkage and special purpose computer peripherals. We wish to establish new teams of electronic engineers and if you are interested in joining us

... YOUR QUALIFICATIONS

 should include a degree, H.N.C. or equivalent. You should have relevant experience. coupled with enthusiasm and ability and
... YOUR REWARDS

with Redifon will be a good salary, stability of employment, a wide range of interesting work and an opportunity to expand your experience into new fields in

... OUR COMPANY

We design and manufacture flight simulators and electronic teaching machines for world-wide markets. The laboratories are situated in a pleasant part of Sussex at Crawley. mid-way between London and the South Coast.

Application forms may be obtained from:
H. C. Hall, Personnel Manager, REDIFON LIMITED.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1970 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in September 1970.

During training a salary will be paid on the following scale :

Age 21	$£ 800$ per annum	
" 22	$£ 855$."
" 23	$£ 890$	"
" 24	$£ 925$	"
" 25 and over	$£ 965$	"

Free accommodation will be provided at the Training School.
After successful completion of the course, operators will be paid on the Grade 1 scale :

Age 21	$£ 965$ per annum	
" 22	$£ 1025$	"
" 23	$£ 1085$	"
" 24	$£ 1145$	"
" 25 (highest age point)	$£ 1215$	"

then by six annual increases to a maximum of $£ 1,650$ per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 30 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from:
Recruitmont Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ.

Telephone No. Cheltenham 21491 Ext. 2270.

Due to expansion there are excellent opportunities for Test Engineers in our laboratories and production departments, testing Radio, Navigator and Survey equipment.
Applicants with first-class background of T.V. and Radio Servicing or Telecommunications. Electronic and Control Circuiting should apply giving details of experience. Conditions are excellent and salaries will be commensurate with ability and experience.

Aplly quoting Ref. NAVI29'0 10 The Personnel Olficer, The Decca Navigator Company Ltd.,
88 Bushey Road, Raynes Park. df London, S.W. 20.
Tel : Wimbledon 8011.

SCIENCE RESEARCH COUNCIL

RADIO AND SPACE RESEARCH STATION

EXPERIMENTAL AND ASSISTANT EXPERIMENTAL OFFICERS
are required for investigations of the propagation of radio waves through the troposphere and ionosphere.
Duties will include the development of electronic and other apparatus, performance of experiments and the processing and analysis of results.
Much of the current work is directed towards th Much of the current work is directed towards the
improvement of communications, particularly by improvement of communications, particularly by
studying the propagation of centimetre and studying the propagation of centimetre and
millimetre waves. Experiments are carried out millimetre waves. Experiments are carried out
using rockets and satellites to study the upper atmosphere.
Suitably qualified staff may spend a tour of duty of up to 3 years' duration in the Falkland Islands to operate and maintain radio telemetry equipment for the reception of data from satelltes.
QUALIFICATIONS: University or CNAA degree HNC or equivalent qualification. If under 22 years. five G.C.E. passes including two science of mathematical subjects at " A " level or equivalent. SALARIES : Assistant Experlment Officer between $£ 683$ and $£ 1,454$ p.a. Experimental Officer between $£ 1,590$ and $£ 2,006$ p.a. Non-contributory superannuatlon scheme.
Apply: The Secretary,
Radio and Space Research Station Ditton Park, Slough, Bucks.
Telephone: Slough 24411.
Closing date 20.2.70.

UNIVERSITY OF DUNDEE

Applications are invited for the following posts in the Electronics Workshop of the Department of Electrical Engineering:

SENIOR TECHNICIAN

 (Electronics) TECHNICIAN (Electronics)
Salary Scales:

Senior Techniciorn £1,056-£1,311 Technician $£ 773-£ 1.077$
The Senior Technician will be required to look after the day-to-day running of the Workshop. which serves the Department by making a wide range of electrical equipment for teaching and research. and by servicing the electronic instruments of many kinds which are used in the ments of m
laboratories.
Applications containing the name and address of two referees should be sent as soon as possible to The Secretary. The University, Dundee, DD1.4HN, from whom further particulars may be obtained.
Please quote reference Est/140/69
2781

BATH UNIVERSITY OF TECHNOLOGY A TECHNICIAN

is required in the School of Mathematics co assist mainily in developing and servicing analogue and digital computing devices. Candidates should have experience in electronics, should possess a basic qualification and be competent in elementary workshop skills.

Salary in the range $\mathbb{7 7 3 - £ 1 , 0 7 7}$ per annum, according to age, experience and qualifications.

Further details and application form from Registrar (S), The University, Bath BA2 7AY, quoting reference 69/82A.

Go places as a Computer Service Engineer

[^15]
ELECTRONICS

This new and rapidly expanding Division of Redifon has vacancies for Design Engineers to work on the evaluation and design of exciting new systems based on digital and analogue computers. Experience of logic design and analogue or digital computing techniques essential. A knowledge of integrated circuits, video systems or data displays would be an advantage. Radar experience not essential. The work will require a standard of knowledge equivalent to H.N.C., but formal qualifications will not be insisted on if applicants can demonstrate the right experience and ability.
These positions have excellent prospects for development in a growing organisation. A contributory pension scheme is in operation coupled with free Life Assurance, also sick pay scheme.

Applications to:
R. F. Goodsman, General Manager,

REDIFON LIMITED
Radar Simulator Division,
25-27 Kelvin Way, Crawley, Sussex. Telephone: Crawley 30201.

NEVE GROUP

speclalise in the design and manufacture of sound control equipment and the supply of complete installations for professional sound studios in the fields of recording, broadcasting, television and films.

RUPERT NEVE \& COMPANY LIMITED

 require the following staff:
SENIOR SALES APPOINTMENTS

We require mature and experienced men with drive and inisiasive to open up new fields and markets at hame and overseas. These posts will carry considerable responsibility and will be offered to those who can prove a successful experience in a similar capacity. Some technical knowledge of these fields will be necessary together with the ability to negotiate the sale of capital equipment at Board level. Since the posts involve world wide travel, the ability to speak fluent German. French or one other language in addition to English at the sime of applying will be a positive advantage.
Age should be 28-40. Salary will be commensurate with age and experience. Benefits will include the provision of a car and assistance with housing or moving may be arranged.
The posts will normally be based in England but consideration would be given to applicants resident in Holland or Switzerland. A qualifying period at headquarters in England would be required. by radio. The successlul candidates must be able to associate themselves with these objectives.

ASSISTANT TO CHIEF ENGINEER

experienced in audio systems specification and application, to work on major projects in the professional recording, broadcasting and television field. Applicants should be capable of accepting a high degree of extrovert personality and will be expected to have direct contact wish the customer at a high level in close co-operation with the Sales Department. The post will include a certain amount of overseas travel.
Qualifications-H.N.C. Minimum. Age- $25-35$. Salary-commensurate with age and experience.

NEVE ELECTRONIC LABORATORIES LIMITED

require the following staff:

PROJECT ENGINEERS

experienced in circuit and mechanical layout and able to work on their own initiative to plan and progress
projects from initial block and 2 wire diagram stage through production, test and installation. Age over 25

TEST ENGINEERS

to take responsibility for final test. A knowledge of the audio field is desirable, but greater importance is attached to experience of semiconductor circuits and a sound understanding of the techniques of electrica measurements. Applicants will be expected to be capable of direct dealing with customers and of making on-the-spot decisions and will work in close collaboration with the Sales Department. Applicants must be of good personality and presentation, combined with the necessary technical expertise so carry out their assignments competently.
Generous salaries are offered in accordance with age, qualifications and experience. Assistance with
housing or moving may be arranged for sultable applicants.
Apply to: Personnel Manager RUPERT NEVE \& COMPANY LIMITED Cambridge House, High Street, Melbourn, Nr. ROYSTON, Herts.

OPPORTUNITIES IN TELECOMMUNICATIONS

Men with good telecommunications knowledge are required to be responsible for telephone switching and transmission equipment on London Transport.
The work involves shift duties and consists of maintaining, testing and fault finding on the following types of equipment:
(a) Automatic telephone exchange and assoclated equipment.
(b) Multi-channel carrier equipment.

A sound knowledge of one of these categories of work is required. The possession of City and Guilds Certificates (or equivalent) in telecommunications subjects 49 and 300 would be an added advantage. The rate of pay including a variable incentive bonus averages $£ 27$ for a 5 day, 40 hour week. Additional payments are made for overtime, night work and rostered Saturday and Sunday duties.
These positions offer: Free travel on and off duty, sick pay and pension schemes.
Please apply in writing to:
Superintendent of Recruitment,
Griffith House,
280 Old Marylebone Road,
London, N.W.I. (Ref. A.T.L.)

SITUATIONS VACANT

A. Full-Time technical experienced salesman reA quired for retall sales; write giving detalls of age. previous experience, salary required to-The Manager.
Henry's Radio, Lid. 303 Edgware Rd., London. W. 2. ARE YOU INTERESTED IN HI FI? If so, and you
have some experience of seluing in the Retall Radto A have some experience of selling in the Retall Radio Trade, an excellent opportunity awaits you at Telesonic
Ltd., 243 Euston Road. London, N.W.1. Tel. 01-387 7467 . [21 A TV NETWORK LIMITED, ELSTREE. Salaries in A excess of £2.000 in Commercial Television. ATV has vacancies for Vision Control Engineers based at a wide range of modern colour television camera equipment. Applicants should have had conslderable relevant experience in colour televislon. APPLICATIONS giving full details of age, knowledge and experience should be sent to the Head of Stafl Relations, 150 Edmund Street, Blrmingham 3-please mark on the envelope
VACANCY $107(E)$. CENTRAL AMERICA: Radio Engineer required to Rastall and manage broadcasting equipment at new
Radio School to be established at Choluteca. Republic Radio School to be established at Choluteca. Repubic of honduras. Chalienging post Vor the adventurous, board, lodging, pocket-money, allowances. - Write
CIIR/OV, 38 King Street, London, W.C.2.
[2737
CIVILIAN INSTRUCTOR GRADE III (Telecommuniin cations). Up to 3 posts for men fully experienced In the maintenance of radio and/or terminal chan-
nelling equipment (including ancillary equitpment such nelling equipment (inciuding ancillary equipment such
as $D C$ telegraph machines and telephone exchanges) to teach Royal Signals technictans and trainees. Possession of appropriate ONC, C. \& G. certificates or equivalent qualifications are desirable but not essential is selection will be by written examination and interview. Starting salary $£ 1,061$ (at age 21)- $£ 1.491$ (at age 30
or over) rising to $£ 1,643$. Prospects of penslonable or over) rising to 21,643 . Prospects of pensionable further technical study and Day Release will be aranted where possible. Accommodation may be provided for single and for unaccompanled married men on a
temporary basis. Write for application form to CEPO. temporary basis. Write for application form to CEPO,
HQ Northumbrian District. Peronne Lines. Catterick HQ Northumbrian District. Peronne Lines. Catterick
Camp. Yorkshire. Closing date: 30 January, 1970. [2829 FLECTRONICS and Instrumentation for Medical CResearch. Electronics Technical Officer required to apparatus using radio-active isotopes, also data transmission, and other interesting electronics work connected with medical research. Oraduate electronics engineer with experience of digital circuits preferred. Salary £1,285-£2.120 per annum. Applications to the Secretary, Roya Postgraduate
Hammersmith Hospital, London. W.12, quoting ref.: 8/104. ${ }_{\text {[2833 }}$ ELECTRONICS TECHNICIAN required by Guy's position in a team concerned with the design. con-
struction and maintenance of electronle equipment throughout the Hospital and the Medical School. Minimum qualifications O.N.C. Salary scale: $£ 1.120-$ S 1.455 D. . Apply, naming two relerees, to Hospital
Secretary, Guy's Hospltal, London, S.E.1.
[2839 EXPERIMENTAL OFFICER-DIgital Electrontes. An in experimental afncer is required to advise and assist in research into mechanical Engineering research. He should be able to design, construct and test the special interfaces needed and to ensure their compatibility with a PDP 9 computer. HNC preferred. Salary in the range \& $1.042-$ - 1,996 per annum according to age.
qualifications and expertence. Superannuation scheme. Four weeks annual leave. Apply in writing to Dr. C. E. Turner, Department of Mechanical Engineering,
Imperial College, London, S.W.7.
[2804
DERSONAL ASSISTANT with servicing experience required by owner of TV retall busimess of the highest standing established over 40 years in N.W. London. Good position and prospects for capable man. State age and detalls of career.-Box WW2822, Wire-
Prototype electronics wiremen required for a
small but rapidly expanding compsny mansfacturing "one ora' systems to customers speclifeations. The work covers the fields of Analogue. Digital and Industrial electronics. Five years experience on prototype wiring, including making the ancillary hardware, to sketches is required. Abllity to teach trainees
would be would be useful.
Salary up to $\boldsymbol{x} 1,500$ depending on experience. Applications in writing to--Parametric Ltd., Highfeld
Works, Canal street, RUNCORN, Ches.
[2803 R adio School in PaNAMA: Radio Technician Veraguas. The school provides an elementary adult education programme and is now unable to function for lack of a technić-ll to take charee. Challenging opportunity to fill a vits: need in the development of rural areas. Volunteer cerms: board. lodging, pocket-
money. fares, allowances. Write CilR/OV 38 King Street, London, W.C.2.
 ELECTRONICS INSPECTORS. Good commencing salarles. We pould particularly welcome enquiries from ex-Service personnel or personnel about to leave
the Services. Please write giving full detalls tothe Services. Please write giving full detalls to-
The Personnel Manager. Redifon Ltd.. Broomhill Road. The Personnel Manager. Redifon Lid.. Broomhill Road,
[26 UNIVERSITY OF EAST AFRICA UNIVERSITY Invited for post of CHIEF TECHNICIAN (ELECInvited for post of Chics) the Department of Physics. Appllcants must possess a Higher National Certificate or equivalent. They should have a wide experience of the design and construction of electronic circuits, especially using supervise the work of up to four electronics technicians, which consists of the repair. development and construction of electronic equipment for the Faculties of Sclence and Medicine: also to seek out and solve special instrumentation problems in these Faculties. Salary scale: £EA $1.350-$ £EA 2.230 p.a. \quad (£EAI $=$
£1. 3s. 4d. sterling). Salary supplemented in range £612-£744 p.a. (Sterling) and education allowances and children's holiday visit passages payable in appropriate cases under British Expatriates Supplementation
Scheme. Superannuation scheme. Scheme. Superannuation scheme; family passages;

communications technicians

Home and Overseas

The Diplomatic Wireless Service requires men capable of working without supervision for the installation, modification, maintenance and operation of (a) radio transmitters and receivers, remotely tuned aerial systems, teleprinters and voice-frequency telegraph equipment over a worldwide network, or (b) very high power transmitters, receiving equipment, tape-recorders, generating plant, etc. at several high power broadcasting stations, or (c) a wide variety of telephone subscribers' apparatus, machine telegraph and other specialised equipment, or (d) microwave receivers, associated test equipment, recorders and audio amplifiers.
Initial appointment will normally be at either Hanslope Park, Bucks., or Crowborough, Sussex, but successful candidates must be prepared to serve anywhere in the United Kingdom or overseas.
QUALIFICATIONS: City \& Guilds Intermediate Telecommunications Certificate plus Mathematics B, Telecommunications B, and Radio and Line Transmission B, or equivalent standard of technical education; and at least 5 years' appropriate training and experience.
SALARY (national): $£ 1,155$ (at 21) to $£ 1,275$ (at 23) to $£ 1.550$ (at 28 or over on entry), rising to $£ 1,735$, with prospects of increases to $\mathbf{£ 2 , 5 7 5}$ on promotion. Non-contrlbutory pension.
WRITE to Civil Service Commission, Savile Row London WIX 2AA or telephone 01-7346010 extn. 229 (after 5.30 p.m. 01.7346464 "Ansafone" service), for application form, quoting $\mathrm{S} / 7102 / 69$. Closing date 5 February 1970.

Technicians

The United Kingdom Atomic Energy Authority offer opportunities at Aldermaston for Technicians to work on the inspection, test to specification, fault diagnosis and calibration of electronic equipment. A wide variety of equipment is involved including general test purpose equipment and data handling and control systems.
Applicants must have served a recognised apprenticeship or have had equivalent experience in the field of electronics. Diagnostic experience in digital circuitry or semi conductor techniques would be an advantage.

Candidates must possess an ONC, a City and Guilds Technicians Certificate or equivalent qualification.

Salary: $£ 1105-£ 1660$ a year.
Housing or Hostel Accommodation will be available.

For application forms write to Chief Fersonnel Officer,
UKAEA, Aldermaston, Reading RG7 4PR quoting reference 3707/45

VISUAL SYSTEMS ENGINEERS

THE JOBS

Project \& Systems Engineering on Advanced Training Aids for Aircraft.

THE MEN

Electronic Engineers preferably H.N.C. or B.Sc. having had practical experience in one or more of the following fields. Flight test, Auto Pilot, Weapons Control, General Process Control, Instrumentation, Systems Design, Colour Video, Systems Maintenance and Design, with a keen desire to learn new techniques and applications.

THE REWARDS

A salary up to $£ 2,000$ per annum. High job interest. Opportunity to work on complex systems incorporating digital and analogue computers, associated peripherals, colour television systems and servo systems as a member of a team. Opportunity to fly and operate simulated aircraft and other equipments.

High quality training will be given.

OTHER BENEFITS

Our terms and conditions of employment are good and include contributory pension scheme, free life assurance, etc. We are not merely offering posts which will afford candidates opportunities of attaining a good job. Selected candidates will be offered long-term careers. Opportunities for occasional overseas travel, etc.
Apply, quoting reference WW/70 to:
H. C. Hall, Personnel Manager.

REDIFON LIMITED
Flight Simulator Division Gatwick Road, Crawley, Sussex Tel: Crawley 28811

Cir-waremilicetronits

Technicians and Engineers for St. Albans and Luton

qualified or not!

Vacancies in all grades

- VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production. Service and Calibration departments.
- APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
- SALARIES up to $£ 1,600$ negotiable and backed by valuable fringe benefits.
- RE-LOCATION EXPENSES available in many instances.
- CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
- $37 \frac{1}{2}$-hour, 5 -day, office-hours week.
- WRITE or 'phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required.

- - Marconi Instruments Limited

Longacres. St. Albans, Herts.
Tel: St. Albans 59292

Luton Airport. Luton, Beds.
Tel: Luton 31441
A GEC-Marconi Electronica Company

Communications Officer Telephone Systems

BOAC have a vacancy at Heathrow Airport for a Communications Officer to be responsible to the Communications Superintendent-Telephones, for carrying out a wide range of traffic and engineering studies related to large PABXs and Automatic Call Distribution equipment. This is an important and highly responsible position offering excellent future career prospects and occasional visits overseas.

Essential qualifications are a minimum of five years' wide practical experience of telephone administration or manufacture coupled with a sound knowledge of traffic studies, equipment engineering and preferably some network planning.
Applicants, aged 25-35, should have HNC, City \& Guilds Fixed Telecom Technicians Certificate or equivalent qualifications. Salary will be in the range £1751-£2086 per annum plus £85 London Weighting. Additional benefits include an excellent pension scheme and opportunities exist for holiday air travel.
Write with full personal and career details to:
Manager Selection Services (WW/220),
BOAC
P.O. Box 10,

Heathrow Airport-London,
Hounslow, Middlesex.

30AC

biennial overseas leave. Detalled application (6 coples) $\begin{array}{lcl}\text { naming } & 3 \\ \text { neferees by } \\ \text { University } & 13 & \text { February } 1970 \text {, to } \\ \text { Councl1, } & \text { Inter- }\end{array}$ London, WIP ODT from whom particulars are avallable.
UNIVERSITY OF WALES Institute of Science and Technology, Cardif. Department of Applited Physics. M.Sc.fipiploma Course in Electronics. Applications are invited for places In the full-time one-year M.Sc./Diploma Course in Electronics, commencing 28th September, 1970 , Further details can be obtained from
the Registrar and Secretary. Unlversity of Wales Institute of Science and Technology, Cathays Park, Cardif. CFI. 3NU, Application forms should be completed and returned to the College as soon as possible,
We have vacancies for four Expertenced Test Engineers in our Production Test Department. Applicants are preferred who have Experlence of Fault
Finding and Testing of Moblle VHF and UHF Moblle Equipment. Excellent Opportunities for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd. Cambridge Works, Halg Road, Cambridge, Tel. Cambridge 51351.
Extn. 327.

ELECTRONICS TEST ENGINEERS

are required for a newly formed section in an expanding company. Previous experience of testing and "fault finding" on electronics components and assemblies is essential. Applicants must be suitably quallified, preferably to H.N.C. standard. Familiarity with Ministry/ARB procedures would be advantageous.

Applications in writing to Personnel Officer, S. DAVALL and SONS LTD., Wadsworth Road, Perivale, Greenford, Middx.

2793

ARTICLESTFOR SALE

BRAND NEW ELECTROLYTICS, $18 / 16$ volt, $0.5,1$, Film Resistors i watt 5% E12 Serfes 10 ohms to 1 Megohm $1 / 6$ dozen, minimum order $7 / 6$, postage $1 /$ The C. R. Supply Co., 127 Chesterfield Rd., Sheffield $\mathbf{5 . 8}$.
[2796
BRAND NEW FULL SPECIFICATIONS DEVICES. B Integrated ctrcuits complete with data: GE PA230 Audio Preamplifier. $18 / 6$ each; GE PA234 $1 W$ Audio
Ampliffer, $17 / 6$ each. GE PA237 2W Aucilo Amplifer, Amplifier, $17 / 6$ each; GE PA237 2W Audio Amplifier,
$32 / 6$ each: Plessey SL402A Preamp $2 W$ $32 / 6$ each: Plessey SL402A Preamp \& 2 W Amp. 42/-
each; MEL 11 Photo Darlingion Amp, $9 / 6$ each; High quality low cost plastic transistors: GE 2NS172 NPN quality low cost plastic transistors: 0412 PNP 200 mW Transistor. $3 / 9$ each; TI 2N4059 PNP 250 mW Transistor. 3/6 each. Plistic rectifiers for power supplies: 1 N 4820
 Wave Bridge SI. ${ }^{7 / 6}$ each. C.W.O. P. ${ }^{\text {S }}$ P. ${ }^{1 /-}$ Der
order. JEF ELECTRONICS, York House. 12 York Drive, Grappenhall. Warrington, Lancs. Mall Order
Only.
$B^{\text {UILD }}$ IT in a DEWBOX quallity plastics cabinet. Ringwood Rd., FERNDOWN, Dorset. S.A.E. tor leaflet. Write now-Right now.
COLOUR TV COMPONENTS, all spectallst parts for - W.W. Colour Recelver. S.A.E. for new catalosue. Forgestone Components, Ketteringham, Wymondham, Norfolk.
DISC RECORDING UNIT complete with Leak stereo Dimplifer, mod, meters, console, motorised swarf suction unit, spare blank, sapphires, etc., etc. Sugden cutter unit. Good condition. Best offer over $£ 50$. John King (Fllms) Limited, Film House, 71 East Bireet. W.H.T. Rectiflers, K8/30 $3 /-. \quad$ K3/50 $7 / 6$, K3/100 $12 / 6$. Vib. pack $6 \mathrm{~V}-220 \mathrm{VDC} 30 /-$. 12 V 2 A Projector Lamp Ses
 BOURDON CAMPS, ${ }^{\text {¹ }} 1$ P\&P Higher Compton Road, Plymouth, Devon, PL3 \$HZ. Tel. 0752 77974. [2826 HOW to Use Ex-Govt. Lenses and prisms. Booklets. ENGLISH. 469 RAYLEIGH RD., HUTTON, BRENTWOOD. ESSEX.
OSCILLOSCOPE TELEQUIPMENT, Type D43R, as Onew, \&90. 182, Bevendean Crescent, Brighton,
[2791.
Tel.: 6144.
PRECISION RESOLVER, Reeves Instrument Corp. Quantity, new. Type R601H Model 102 and R601 Model 101. AMPEX Video Tape Recording Head, Cat.
No. 167700-10. ENGLISH ELECTRIC VIdicons Types No. 167700-10. ENGLISH ELECTRIC VIdicons Types
P813 and P826. Branson, 111 Park Road, Peterborough. P813 and P826. Branson, 111 Park Road, Peterborough.
Tel. 67604.
T. 144 Spare Thermocouple Units, new, boxed, 45/-1.-. 20 ft . Telescoplc Masts, new, packed two in a wooden case, $25 / 15 /-$ the pair; bases to match, $30 /-$
each.
CTZ18 FM/AM
Signal Generator, $85 K C S$ 30 MCS, excellent condition, \&65. RA17 Communications Receiver, £200. EE8 Field Telephones, £5/10/per pair. Valve Tester 1 117B with adaptor MX949, new, £ 11. All carr. pald. Wanted, Manuals on Army and R.A.F. Equipment C13, C42, R210, RT2002, etc.
25 KVA Voltage Stabiliser, $240 \mathrm{v}, 3$ phase, 49 HZ output. Please phone Dane End 334 (Herts). [2782 UHF, COLOUR and TV SERVICE SPARES. Leading time base unlts incl. EHT transformer, £5, carriage 10/.: Integrated UHF/VHF 6 pasition push button
 UHF 3 transistor tuner incl. circult, $£ 2 / 10 /-\mathrm{P} / \mathrm{P} 4 / 6$. UHF

compuriter chaincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1,250$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road. London, NW2
quoting publication and month of issue.
Plan your future with

ELECTRONICS

A new and rapidly expanding Division of Red fon Ltd. has the following vacancies:

SENIOR ENGIMEERS

to work on the evaluation and design of exciting new systems based on digital and analogue computers. Experience of logic design and analogue or digital computing techniques essential. A lenowledge of integrated circuits, video systems and data displays would be an advantage. Radar experience not essential. The work will require a standard of knowledge equivalent to H.N.C., but formal cualifications will not be insisted on if applicants can demonstrate the right experience and ability.

calibration and IMSTALLATION EMGINEERS

must be used to handling modern transistorised electronic equipment and must be able to follow calibration procedures faithfully. Some experience of using computing techniques would be tseful. Radar experience not necessary. Must be willing to make occasional short trips overseas.
These positions have excellent prospects for development in a growing organisation. A contributory pension scheme is in operation coupled with free Life Assurance, also sick pay scheme.

Applications 10: R. F. Goodsman, General Manage* REDIFON LIMITED
Radar Simulator Division,
25-27 Kelvin Way, Crawley, Sussex,
Telephone: Crawley 30201.

Senior Posts for
 DRAUGHTSMEN

AND ENGINEERS

LABGEAR LTD. of CAMBRIDGE have vacancies in their engineering division for the following Staff:

1. TWO SENIOR DESIGN DRAUGHTSMEN with experience in light engineering, sheet metal design and layout of printed circuits.
2. A SENIOR RADIO COMMUNICATIONS EQUIPMENT DEVELOPMENT ENGINEER with experience in S.S.B. circuit techniques.
3. A DEVELOPMENT ENGINEER with experience in design of U.H.F. aerials and amplifiers.
4. AN ELECTRONIC INSTRUMENT DEVELOPMENT ENGINEER with broad general experience of both digital and linear techniques.

The above staff are urgently required with a major expansion programme. Our own staff have been fully informed. Exceptionally good working conditions, first class pension and life assurance scheme.

Please apply to Personnel Manager,
LABGEAR LTD., CROMWELL ROAD, CAMBRIDGE Telephone 47301

OXLEY ${ }^{\circ}$ 甲
 CHIEF DRAUGHTSMAN

OXLEY DEVELOPMENTS COMPANY LIMITED who are engaged in the invention, design and manufacture of precision built miniature and subminiature electronic components of the highest quality, require a SENIOR MAN to take charge of the Drawing Office.
This modern factory, situated in the most pleasant and healthiest rural surroundings on the fringe of the English Lake District, employs a very wide variety of talents and offers unequalled opportunities to a competent, educated, inventive and level headed man familiar with production techniques and associated tooling for the production of electronic components.
Applicațions giving details of education, qualifications, experience and salary, and including copies of two references, or names and addresses of referees, to be addressed to:-

The Personnel Manager,

OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY PARK : ULVERSTON : NORTH LANCASHIRE

WE OFFER A YOUNG ENGINEER

the opportunity of working in an up-to-date tape recorder service department on Uher recording equipment.

The applicant should be familiar with the latest transistorised circuitry as well as being able to carry out mechanical work on such equipment.

We offer a good salary, non-contributory pension scheme, subsidised canteen facilities and some local transport.

If you are interested, please write giving brief details about your qualifications and experience to:

The Personnel Manager,
BOSCH LIMITED, Rhodes Way, Watford, Herts.

BROADCAST ENGINEER

The Guyana Broadcasting Service requires the services of an engineer to take charge of their Broadcasting Operations.
The station broadcasts one sound programme in the medlurr waveband serving primarily the Georgetown area, and the Hinterland area by HF. A development programme has recently been initiated to improve medium wave reception in certain areas.
The engineer will be responsible for both administrative and technical operation of five studios and ancillary facilities, and also the transmitting station at Sparendaam.
Candidates should be experienced in M.F. Broadcasting transmitters. studio equipment. and have wide practical experience. They should preferably have Higher National Certificate or similar qualifications.

Salary to be negotiated according to ability and experience.
Apply to:
Head of Operational Services Department,
Rediffusion Engineering Ltd., 187, Coombe Lane West,
Kingston-upon-Thames, Surrey.
REDIFFUSION

FOR HIRE

FOR hire CCTV equipment including cameras, -Detalls from Zoom Television, Amersham 5001. ARTICLESWANTED:
Wanted, all types of communications recelvers and lest equipment.-Details to R. T. \& I Electronics, Ley., Ashvile Old Hall. Ashville Rd.. Lon-
don. E.1. Ley. WANTED, televistons, tape recorders, radiograms, High St., West Bromwleh, Stafts. Tel. Wes. 0186 . ${ }^{37}$ Wanted used Elliott Bros. Automation transistor curve tracer, Model 8096, also instruction book Parker 709 9088.

WANTED RELAYS:

(1) GEC Sealed Type M1574,12v, 180 ohms: (2) ERICSSON or PLESSEY Tubular Types (21" "long, 1° dia.)
(a) $48 \mathrm{v}, 1650 \mathrm{ohms}$. Ref. 12-0306. (b) $48 \mathrm{v}, 1650 \mathrm{hms}$. Ref. 12-0307 (d) $24 \mathrm{v}, 440$ ohms. Ref. 11.9145 .
(3) PLESSEY Plug-in Type $24 \mathrm{v}, 670 \mathrm{ohms}$, with tran!parent cover. This Relay is the samesize as GEC Sealed Type. Phone any time 021.454 8305

VALVES WANTED

We buy new valves, transistors and clean new com. quotation by return.-Walton's Wireless Stores, 55 Worcester St.. Wolverhampton.
SCRAP R.F. Heating and Transmitting Valves wanted S TY5-500, TY6-800, TY7-600, ESA 1500. BR 1126, May be interested in other types. Good price paid for valves stll! under vacuum. Electronic Heat Co, 01-654 $\begin{aligned} & 7172, \\ & {[2606}\end{aligned}$

CAPACITYAVAILABLE
 A IRTRONICS, Ltd., for coll winding, assembly and unit sheet metal work.-3a Walerand Rd. London unit sheet metal work.-3a Walerand Rd., London, S.E.13. Tel. $01-852$ 1706. ELECTRONIC and Electrical Manufacture and E.Assembly. Prototypes and short production runs. | East MIdlands Instrument Co. Lid., Summergangs |
| :--- |
| Lane, Galasborough, Lincs. Tel. 3260 . |
| 88 | METALWORK, all types cabinets, chassis, racks, Notc, to your own speciflcatlon, capacity avallable for small milling and capstan work up to lin bar.- PHILPOTT'S METALWORKS. Ltd., Chapman St. Loughborough.

ETECHNICAL TRAINING
$\mathrm{B}_{\text {ECOME "Technically Quallted" in your spare time, }}^{\text {ECO }}$ In radlo. TV. servicing and mainteamace. R.T.E.B., Clty \& Gullds, etc., highly informative $120-$ page Gulde-free,-Chambers College (Dept. 837K), College
House, 29-31 Wrights Lane, Kensington, London, W. 8 . 16 House, 29-31 Wrights Lane, Kensington, London, W.8. (16 CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee ${ }^{\circ}$ terms. Thousands of passes. For detalls of modern courses in all branches of electrical engineering, electronics, radio, T.V.. automation, (Dept. 152 K), Adermaston Court. Aldermaston, Berks.

R ADIO officers see the world. Sea-going and shore Grants available. Day and boarding students. Stamp for prospectus. Wireless College, Colwyn Bay. [80 TECHNICAL TRAINING IN Radio, TV and Electronics - through world-famous ICB. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext
House, Stewarts Road. London, S.W.8.
[24
TV and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B.; certs., etc., on satisfaction or refuad of fee terms; thousands of passes; for full detalls of exams and home training couirses (including practical equipment) in al branches of radio, TV, electronics, etc., write for $132-$
page handbook-free; please state subject.-British page handbook-iree; please state subject.-British
Institute of Engineering Technology (Dept. 150K), Aldermaston Court. Aldermaston, Berks. [15

TUITION

ENGINEERS.-A Techatcal Certificate or qualificaEthon will briag you security and much better paly. Elem. and adv. private postal courses for C.Eng; A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.), City \& Gullds, A.M.I.M.I in A.L.O.B.i and G.C.E. Exams. Diploma courses in all branches of EngineeringDraughts, Bullding, etc.-For fun detalls write for FREE 132 -page dulde: Brittsh Institute of EngineerFREE 132-page Gulde: British Institute of Engineer-
Ing Technology (Dept. 151 K). Aldermaston Court,
Aldermaston. Berks.
KINGSTON-UPON-HULL Education Committee. K College of Technology. Principal: E. Jones, M.Sc.. FUULL-TIME courses for P.M.G. certifcates and the College of Technology, Queen's Gardens, Kingston-upomHull.

MaNU Nowireless equipment and instruments from original R.E.M.E. Instructions; s.a.e. for list, over 70 types.W. H. Balley. ${ }^{167 a}$ Morfat Road, Thornton Heath.
Surrey, CR4-8Pz.

PATENTS

THE PROPRIETORS of Patent No. 937789 for desimprovements in or relating to a Telegraph Printer or otherwise in the United Kingdom. Replies to Box No. WW 2795 Wireless World.

ELECTRONIC TECHNICIANS

Marconi can offer you

Attractive salary. Annual salary reviews Good working conditions. 37-hour working week Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical staff to work on the design and manufacture of specialised electronic test equipment and also on the repair and maintenance of general electronic test appraratus. Applicants should have a good basic knowledge of electronics and have some previous industrial or retail trade experience.

Marconi 6

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone : Basildon 22822.

A GEC-Marconl Electronics Company

Electronic Engineer

METEOROLOGICAL OFFICE MINISTRY OF DEFENCE (Air Force Department)

Post of ASSISTANT SIGNALS OFFICER at the Meteorological Office Headquarters in Bracknell, Berks, for man or woman aged at least 23 on 21st December 1970
DUTIES relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the U.K. system making optimum use of computers. QUALIFICATIONS: Either (a) Corporate Membership of the Institution of Electrical Engineers, the Institution of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their requirements, or (b) 1st or 2nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience. Wide knowledge of telecommunications and aptitude for planning expected. Some experience of planning for automation in telecommunications an advantage.
STARTING SALARY (national): up to $£ 2,300$. Non-contributory pension.
WRITE to Civil Service Commission, 23 Savile Row, London WIX 2AA, or TELEPHONE 01-734 6010 extn. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" Service), for application form, quoting $S / 7249 / 69$. Closing date 10th February 1970. Candidates who have already applied should not do so again.

AMERICAN

test and communications equipment \star General Catalogue an/104 $1 / 6$ * manuals offered for most U.S. equipments

SUTTON ELEGTRONICS
 Salthouse, Nr. Holt, Norfolk. Cley 289

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397 541I

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, Lond on Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

SURPLUS HANDBOOKS

19 set Clrcult and Notea

1155 set Croult and Noten
H.R.O. Techncal Instruction
H.R.O. Technical Instruction

38 set Technical
48
88
set Torking Instructions
88 set Technical Inetruction
BC. 221 Clrcuit and Notes 18 set Cireut and Notes BC. 1000 (31 set) Circuit and Notea CR. 100/B. 28 Circuit and Notes AR.88D Instruction Manua 62 set Clrcuit and Notes
 R.P. 24. 20, and 26, A.1134. T.1164. CR.300, BC.312, BC.342, 52 set Hender and Recelver circults $7 / 6$ poit free. Colour Code indicator $9 / B$ circuls $7 / 6$ poat ir

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS,
R. F. HEATERS. FREE CATALOGUE.
V. N. BARRETT \& CO. LTD. 1 MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917-8-9
B.A.E. With Nil enquiries plenge.
Portage rates apply to U.K. only. Mad order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

DEIMOS Lto

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel 8 CORWELLLANE, HILLINGDON, MDX. Hares 3561

LAWSON BRAND NEW TELEVISION TUBES

12" Types $\mathbf{~} 4.10 .0^{2}$
14^{*} Types $\mathbf{E 4 . 1 9 . 0}$
17* Types 65.19 .0
19° Types $\mathbf{6}$ 6.19.0
$21{ }^{\circ}$ Types $\mathbf{E 7 . 1 5 . 0}$
23° Types $\mathbf{E 9 . 1} 0.0$
19° Panorama 88.10 .0
23° Panorama $\in 11.10 .0$
19° Twin Panel E9.17.6
23° Twin Panel E12.10.0
Corriage and insurance
$12^{\circ}-19^{\circ}-1216$ $21^{\prime \prime}-23^{\circ}-1510$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the neto Laveson "Century 99 " range of C.R.T.s. "Century 99" are absolurely brand neto rubes throughouk, manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle shapp definition. Screens of the very latest type giving maximum Contrast and Light output; together woith high reliability and very long life.
"Century $99 "$ are a complete range of tubes in all sizes for all British sets manufactured 1947-1969. Complete fitting instructions are supplied with every tube.

2 years full replacement ouarantee

> LAWSON TUBES

18 churchdown road MALVERN, WORCS. Tel. MAL 2100

SILICON TRANSISTORS

1,000,000 FOR SALE

CLEARANCE OF PNP SILICON ALLOY TRANSISTORS FROM THE $25300(T O-5)$ AND 25320 (SO-2) RANGE AND SIMILAR TO THE OC200-205 AND BCY30.34 FRACTION OF THE MANUFACTURING FRACTION OF THE MANUFACTURING COST. ALL THESE DEVICES WOULD NORMALLY BE SUBJECT TO RE-SELECTION CORPANY POLICY CMANGE, THESE HAVE BEEN MADE AVAILABLE TO US SURPLUS TO REQUIREMENTS. OFFERING TMESE TRANSISTORS IN VARIED QUANTITIES MAKE THEM IDEAL FOR AMATEUR ELECTRONICS, RADIO HAMS AND FOR EXPERIMENTAL USE IN SCHOOLS, COLLEGES AND INDUSTRY.
SUPPLIED UNCODED (no warrantee by the manulacturers) BUT OUR ASSURANCE GIVEN THAT A MINIMUM OF 80% WILL BE FOUND TO BE GOOD USABLE SILICON ALLOY TRANSISTORS. Please state preference of type, I.e., TO-5 25300 or SO- 225320 .
Approximate count by weight ;
100 off 15 s. Od. plus P. \& P. 2s. Od. 300 off E1 15 s. Od. plus P. \& P. 3s. Od.
500 off E2 10s. Od. plus P. \& P. 3s. 6d.
1,000 off 54 Os. Od. plus P. \& P. 5 s .0 d . 10,000 off E35 Os. Od. plus P. \& P. 11s. Od.

Large quantities quoted for on requeal.
EXPORT ENQUIRIES WELCOME
All correspondence, chequen, poatal orders, eto., to t
DIOTRAN SALES
P.O. BOX 5, 63a High Street, WARE, Herts.
Telephone: WARE 3442

High grade of stability of electric parameters Resistance and durability Long operational life

Polish

electronic tubes for radio receiver sets electronic tubes for TV receiver sets and electronic components

are offered by

Foreign Trade Enterprise Warszawa, AI. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370.

Telex No. 81437

To persons interested we forward detailed information, catalogues and tenders.

WW-097 FOK FUKIHER DETAILS

and electronic equipment manufacturers Large and small quantities. Full design and Prototype Service. Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18.GREENACRES ROAD. OLDHAM Tel: 061-6240939

TOVOON CENTREL iado stopis

 tariII to your requirementa. Suitable for hotela, etc. $200 / 250$.
10 A. $80 /-15$ A. $90 /-, 20$ A. $100 /$. P.P. 7/6. Other nmperages
 WIR ELESS SET No. 38 A.F.V. Preq. rarige 7.3 to $9.0 \mathrm{Mc} / \mathrm{m}$. Worik
 Includee power nupply 81 b . - and opare valvew and vibrator alac
tank aerial with hane. $£ 8$ per pair or $£ 4$ dingle. P.P. $25 /-$. tank aerial with bure. $£ 8$ per pair or $£ 4$ aingle. P.P. $25 / \%$
MODERN DESK PRONES. red, green, blue or topaz MODERN DESK PHONES, red, green, blue or topaz. 2 tone grey or black, with interna beal and hern
$£ 4 / 10 /$. P.P. 7/6. 10-WAYPRESS-BUTTON ITTER-COM TELEPBONES in Bake Iite case with function boz handset. Thoroughty overthauled. Ouarantieed. $26 / 10 /-$ per unit. 2O-WAY PRESS-BUTTON INTER-COM TELEPHONES \ln Bakeithe case with lunction boz. Thoroughly overbauled. Guaran ed. efis- per unit
QUARTERLY ELECTRIC CHECK METERS 3 core, 5/6. P.P. 1/gunt new. 200/250 v. 10 A. $42 / 6$; 15 A . $52 / 6 ; 20 \mathrm{~A}$. $\mathbf{5 7 / 6}$. Other mperiges avallabie. 2 y yars guarantee. P.P. ©j-.
S-BAHK OFISELECTOR SWITCHES.
wiging 25 contact, alternate wlping e2/15/-; 8 bank hall wipe e2/15/-; 6 bank hall wlpe. 25 contacte 47/6. P.P. 3/6.
Recelverm in atock. All for cillera ons, various callern. also 19
${ }^{23}$ LISLE ST. (GER 2890) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENOON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991

 RF. AF.BFO. Power required 240 v D.C CR 100 RECEIVERS. Amieur Bhipping Broedcatt. $60 \mathrm{Kc} / \mathrm{s} 30 \mathrm{Mc/a}$ A.C. or D.C. Maln operation. Pully tested. 283.10.0 cur LP Veraion of B.40.
B.4 RECEIVER LF Version of B.40. Covers
Malia Operation. As pew $\mathbf{~ 8 8 . 1 0 . 0 \text { . Carr. } 3 0 / =}$
 RECEIVERS II COMMUNICATION Mc/s. ${ }^{4}$ bands. $A M / F M$ Covers 1.20 12v. D.C. Internal Power Bupply. (213.10.0. Carr. 15/ For

TELESCOPIC MAsTS. 20ft. Chasea t 5ft. Bin. 70/\%. Cart. 15/. 34it. Dltto 80/35 h . AERIAL MASTS, Aeven 2in. dia
nections. Interlock Rin. Complet. Buse, Nylon Guys 218.10.0. Carr. 50

LIVINGSTONE LAB TRANSISTGR
 alze 18 ln.
Oarr. 20%

```
Ourr. 20/
```


A.J.THOMPSON (Dept. W)

"Eiling Lodge". Codicote, Eitchin, Herts. Phone: Codicote 242 C.W.O. Carriage charres apply to mainand only.
there are gems in ireland This is one

THIS is another

if you want a real gem contact
 AFTER ALL, WE'RE IN THE EMERALD ISLE

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
 First-class opportunities in Radio and Electronics await the IC S trained man. Let

 I C S train YOU for a well-paid post in this expanding field.IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G.TELECOMMUNICATION TECHNICIANS' CERTS - C. \& G. ELECTRONIC SERVICING

- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver. transistor portable, signal generator, multi-meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio. Television and Elegtronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INIERNATIONAL
 CORRESPONDENCE
 SchOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. 230), Intertext House. Stewarts Road.
London. S.W. 8

NAME

Block Capitals Please
ADDRESS

OSMABET LTD.

WE MAKE TRANBFORMERS AMONGST OTHER THINGS

 MAINS TRANSFORMERS. PTIm 200-240 v E.c. TX1. 425:0-425
 250-0-250

 INSTRUMENT TRANSFORMERS. Prim $200 / 250$ v A.c., OMT4
 2 amp OMTJ/2 $80 /-:$ OMT5/1 tapped sec, $10-50-60-80 \cdot 90-100-$

HEATER TRANSFORMERS. Prim 200/250 v̌ a.c. 6.3 ₹ 1.5 a

$150 /-12-10-12 \mathrm{~F} 1 \mathrm{a} 18 / 6 ; 20-0-20 \div 0.7 \mathrm{a} 18 / 6$.
MIDGET MAINB TRANSFORMERS. FW rectification. Bize

CEOKES. Lnductance $10 \mathrm{R} .65 \mathrm{Ma} 12 / \mathrm{F}: 85 \mathrm{Ma} 15 /-; 150 \mathrm{Ma}$
> W.W. COLOUR TELEVISION RECEIVER

> Transformern and choke an apecifed.
> Choke Li 80/-; Trannformer T1 $57 / 6$; Fleld O / P

Castiage extra on all transformert $\$ / 6$ minimum.
BULK TAPE ERASERS. 200/250 F a.c., immediate and complete erasure of any aize apool of ragnotic tape. aleo suttable iot fluorescent ligeting. 12 v LT, complete fitting. 12 Im . 8 watt $110 /-; 21$ ins. 18 watt $130 /-;$ special offer 18 ins. 15 wath
 stubes. $150 /$-: single 20 watt, $100 /-$
LOUDSPEAKERS. Complete range, famous make, 25 watt
$107 /=35$ watt $130 /-: 50$ watt. $320 \mathrm{O}-$ etc., etc., all ai discount

 Carriage extra on all orders.

S.A.E. ALL ENQUIRIES PLEASE

 MAIL ORDER ONLY46 KENILWORTH ROAD, EDGWARE, MIDDX. HAB BYG.

Tel: 01-9589314
WW-098 FOR FURTHER DETALLS

BAKER HI-FI MAJOR £8

30-14,500 c.p.s., 12in. double cone, wooter and wiweer cone wogether with a BAKER ceramic magnet assembly having a nux density of ${ }^{14,0,000}$ gzuss and a total hux of

 baftie and instructions.

Post Free $\mathcal{E} \mathbf{1 0 . 1 9 . 6}$
LOUOSPEAKER CABILET WADOING 18 in. wide, $2 / 6$ per ft. run. Post 2/6per order.

ELECTRIC MOTORS
(120v. or 240v. A.C.)
lock wise I, 200 R.P.M. off load Heavy duty 4 P.M. ofr load Heavy duty 4 pole 50 mA . size $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in. $\underset{\substack{\text { Batganm } \\ \text { PRICE }}}{17 / 6} \begin{gathered}\text { Post } \\ 2 / 6\end{gathered}$ PRICE 17/6 2/6
TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A self-contained portable
mini pa. system. Many mini pat. system. Many Intercom, Telephone or Record Player Amplifier.
Attractive rexine covered Attractive rexine covered
embinet size $12 \times 9 \times 4$ in., with powerful

hew in Makertery. Ermind

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{lll}\text { 200/250 A.C. } & \left.42 / 6 \begin{array}{l}\text { Post } \\ \text { 2/6 }\end{array}\right]\end{array}$

EXTENSION SPEAKER

Smart plastic cabinet speaker with 201 t lead for transistor radio, intercom, mains radio' tape recorder, etc. $\left.30 /=\begin{array}{c}\text { Post } \\ \text { Size: } 7 \text { tin. } 5 t i n\end{array}\right] .3 \mathrm{in}$.
 RETURN OF POST DESPATCH - CALLERS WELCOME RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD. CROYDON. Tel: 01-684-1665

NEW I HSL． 700 Mono Transistor Amplifier
 A really high Addelity monaural amplifier with ampllifier with performance periormanco eharacteriatica to sult the mont dieeriminating diecriminating listener． 6 tran－ histener．oircual alth integrated with preamplifier asembled on apectal printed aub panbel．AD． $161-A D 182$ 161－AD162 oper－ ating in aymetric－

al complementary palr．Outpat transforner coupled to 3 ohm
and 15 ohm apeaker socketa．Standard phono lnput sockets． Full wave bridge rectifer power supply for A．C．mnins $200-240 \%$ ， Controin：Rama，Treble，Volume／on／ofy．Function eelector tor
PUU，PU2，Tape，Radio．The H8L． 700 ls ntrongly constructed on rigid steel chanie，bronze hammer enamel finlsh，size $9 \hbar$ 纤．X

Bensitivity－PU1－50 m／v，s6K input impedance．
PU2． $110 \mathrm{~m} / \mathrm{v}, 1$ meg．input inpedance．
Tape－ $110 \mathrm{~m} / \mathrm{v}, 1$ meg．Input impedance．
Radlo－ $110 \mathrm{~m} / \mathrm{v}, 1$ meg．Input lompedance．
Ontput power measured at 1 Kc－6．2．Witts RMs into 3 ohma，

 The HSL． 700 his been deulgned for true high hidelity reproiuction trom Rado Tuner，Gramophone deck，end Tape Reconder pre
amp but ta alno capable of being used in conjuaction with a gultar by connecting to PU1 mocket and the peak output power will then be in the region of 15 watta．
supplised ready bulle and tested，complete with knobs，nttractive anodised aluminium front escutcheon pauel．long spindies（can be
cut to ault your housing regairement f），full circuit diagram and operatiog inatructions．OUR \＆PFCLIAL PMICE \＆ $7 / 19 / 6$ ． P．\＆P．7／6．

PARMEKO MRAND NEW／TRANSORMERS

Primary 110v－250v secondary $330-0-330 \mathrm{y}$ ． 100 mA and 8.3 v ． at $2 \mathrm{amps}, 6.3 \mathrm{v}$ ，at 2 amps and 6.3 v ．at 1 amp ．Conservatively
rated．Fully impreEnatod．Electrontatie screen．Saitable for vertical of drop throush monating．Overall size 4itn．$\times 3$ iin．$~ x$

Transistor Stereo 8＋8 Mk．II
Now using sulicon Tranaiktora in first five stapes on each channel
reaulting in even lower noine level with improved enaitrity
 giving 8 wntly puah pull output per channel（16W．mono）， integrated pre－amp，with Basp，Treble and Volurae controis． Suitable for use with Geramic or Crystal cartridges．Output stage for any mpakera from 3 to 15 ohms．Compuct design，all part．
nupplled fncludiug drilled metal work．Cir－Kit board，stitractive iroht panel knobs，wire，solder，nuta，boits－no extran to buy． Stomple atep by step Instructlona enable any constructor to butid an amplifier to be proud of．Briel Specification：Preq．reaponse
$\pm 3 d \mathrm{~B}, 20-20,000$ o／s．Barn boont approx．to +12 dB ．Treble cut $\pm 3 \mathrm{~dB}, 20.20,000$ e／6．Bara boont npprox． $10+12 \mathrm{~dB}$ ．Treble cut
approx．to -16 dB ．Negative feedback 18 dB ．over main amp．
 Circuit dagram．
kit） $1 / 6$（A．A．E．）．
QUALITY RECORD PLAYER AMPLIFIER MK．II
 Sepparate bass，treble and volume controls Complete with output
 ALSO AVAILABLE
and apeaker reanty to fit into babinet below．PRICE $\operatorname{Bi/6}$ ． DE LUXE QUALITY PORTABLE R－PLAYER CABINET MK． 2 Uncut motor board size 14$\} \times 12 \mathrm{in}$ ．．clearance 2 in ．below，
S \ddagger in．above．Will take ampliner above and any B．．R．of
 or 8P2b）．Bize $18 \times 16 \times 8 \mathrm{in}$ ．PRICE 79／6．Carr．9／6．

BAILEY PRE－AMPLIFIER

High quality pre－amplifier circuit described by Dr．A．R．Balley in the December，1966，＂Wireless World＂．This is a low distortion circuit of great suitable for driving Bailey 20 W and 30 W Amplifiers， suitable for driving Bailey 20W and 30W Amplifiers， Linsley hood Class A Amplifier and many others．All
normal pre－amplifier facilities and controls are normal pre－amplifier facilities and controls are
incorporated．A new Printed Clrcuit Board concaining latest modifications 7 in ．by $3 \frac{\mathrm{in}}{\mathrm{in}}$ ．features edge con－ nector mounting，roller tinned finish and silk sereened componene locations．This board is available in S．R．B．P． material or fibreglass and the complete Kit for the unit contains gaingraded BC． 109 transistors，polyester
capacitors and metal oxide resistors where specified．

BAILEY 3OW AMPLIFIER

Alf parts are now available for the 60 －volt single supply rall version of this unit．We have also designed 2 new Printed Circuit intended for edge connector mounting．This has the component locations marked smaller at 4lin．by $2 \frac{1}{4} \mathrm{in}$ ．Price in SRBP material $11 / 6 \mathrm{~d}$ ． in Fibreghass 14／6d．

BAILEY 20W AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre－amp and power amp．Mains Transformer for mono or stereo
with bifilar wound secondary and special 218 V primary for use with CZ6 Thermistor，35／6d．，post 5／－．
Trifilar wound Driver Transformer，22／6d．，post $1 /=$ Power Amp．，12／6d．，post 9d．
Reprint of＂Wireless World＂articles，5／6d．post íree．
DINSDALE IOW AMPLIFIER
All parts still available for this design．
Reprint of articles $5 / 6 \mathrm{~d} .$, post f́ree．
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt components．

PLEASE SEND S．A．E．FOR ALL LISTS．

HART ELECTRONICS，

321 Great Western St．，Manchester 14 The firm for quality．
Personal callers welcome，but please note we are Personal callers welcor
closed all day Saturday．

EXCLUSIVE OFFER

AMPEX model fr－100 A DATA TAPE RECORDER－REPRODUCERS

COMPLETELY FITTED IN 8 h．TOTALLY ENCLOSED ABINETS with rocording and roproduring Amplitiers， ASIX SPEEDS $14^{\circ}, 31^{\circ}, 71^{\circ}$ ＊Interchanaeable HEADS．
$\star 1^{-}$TAPE， 5 TRACES．
 \＆DOEF
SYGTEMS．
\star DC to $\mathbf{3 0 , 0 0 0}$ oyoles
\star UP To 10,000 Pulse Rate． ＊DRIFT FREE WITHIN 1\％． ＊SERVO CONTROL to 0.75 ＊track timino $5 \mu / \mathrm{s}$ ． －ACCURACy 10^{8} der week． ©ELECTRONIOS IN
MODULES FRONT ACCESS

\star POWER INPUT 105／125\％ 48 to $500 \mathrm{a} / \mathrm{d}$ ．
 －Fill tetaile or alient

40－pake list of over 1,000 diferent items in atock available－keep one by you．	
linas R－390 Commanications $0.6 / 30.0 \mathrm{~m} / \mathrm{cs}$	
CV－157［15B／Ss．	
Recordera	
enton 21 D．B．M	
phones	
dale 8FB－3	
Kane	
andlentick miorophonen	
C．A． 5820 Imare Or	
（tice Lirhtweinht stoed	
WANTED VIDEO TAPE Good price pald	
＊Vitevor 20 watt 12° louds peakers． ＊L．C．Tentern with plag boards． ＊Williemson Amplitiers tE．M．L．WM－3 Mearuring Oncilloscopes． ＊Marcond TF－1055 Noise Mensuring Setil t 54 inch．dia．Meteorolorical Balloons． －Mierometer Wavemeters Oeneral Electric $900 / 1530$ and $1530 / 4000 \mathrm{~m} / \mathrm{es}$. eech $\star 455$ i／es Mechanical Band Pass Futeri ＊ti＂New Marnetic Recordlar Tape made by E．M．I．（USA） 3600 tt on N．A．B．Spools． $\star 1^{*}$ Used ditto＂Beoteh＂Brand 4800 ft ． 太 Siebert Measuring Microscopes． $001 \mathrm{~m} / \mathrm{mm}$ ＊Collaro Transeription Turntables． ＊Collinas 800 w．Radio Telephone Trave mitters Autotune 2 to $18 \mathrm{~m} / \mathrm{cs} 230 \mathrm{o}$ ． input new $\star 8$ Track Data High Speed Tape Resders ＊Mason Illaminated Drawing Tablea $50^{\circ} \times 90^{\circ}$ ＊Stelms Telegraph Distortion Monitors．．．．．． ©Toletyde Model 14 Tape Punches．．．．．．．．．．． \star T8－487／URR Signal Generators 2／400 m／cs ＊Sarah Trans／Recelvers and Aerlala ．．．．．．．． 太 Frelz Airport＂Weather Man＂Masts．．．．． ＊75 loot high Latiee Triantular Wind op Masts \star Uniselectorn 10 bank 25 way full wipe +x ． new ．．． ＊Precision Matar Filter Units new． tMarooni HR 22 SSB Receivers $2 / \mathrm{s} 2 \mathrm{~m} / \mathrm{cm} \ldots$ ＊Avo Geiger Counters new．．．．．．．．．．．．．．．．．．． Carrlareertra at cost on allabove． All goods are ex－Government ntoxes．	
Wo bave a lafke quantity of＂btse and pieces＂ we cannot list－please sead as your cequirementh we can probably belp－all onguifien anawered．	

P．HARRIS
ORGANFORD－DORSET BHIG GER
Westbourne bsosi

NEW 4th EDITION

THE SEMICONDUCTOR DATA BOOK

 60/-Postage 5/-
by Motorola
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. 30%. Postage 1/-.
TELECOMMUNICATIONS AND THE COMPUTER by James Martin. 140/-. Postage Free.
SERVICING WITHTHE OSCILLOSCOPE by Gordon J. King. 28/.. Postage $1 /$-.
THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/.. Postage $1 / 6$.
TRANSISTOR MAN UAL by General Electric Company. 21/-. Postage 1/6.
DISCRETE AND INTEGRATED SEMICONDUCTOR CIRCUITRY by L. J. Herbst. 38/-. Postage I/-
SCR MANUAL by General Electric Company. 25/-. Postage $1 / 6$.
TRANSISTOR POCKET BOOK by
R. G. Hibberd. 25/-.. Postage I/-.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET, LONDON, W. 2
Phone PADdington 4185
Closed Sct. 1 p.m.

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. to TELERADIO ELECTRONICS
325 FORE STREET, N. 9
8073719

"SPECIAL OFFER'

Ex LCC Ultra radios requiring attention to clear from c4-0-0, each, callers only. 10 watfs output, provision for microphone. Suit small factory, hall, public address. Standard play Protessional Scotch Boy ${ }^{1}$ Polyester and Acetate recording tape. (Low nolse). Used once only. Approx., 2,500 ft. 19/6. List Price 4 4-0-0. HARRINGAY PHOTOGRAPHIC LTD.
435 Green Lones, London, N. 4 - 01-340 5241

PRINTEI CIRCUITS

PROTOTYPE AND BATCH PRODUCTIONS
Instrument panels and dlals
In Metal and Perspex
\star SCREEN PROCESS PRINTERS $*$
Brooklands Plating Co. Ltd.
Splé's Yard, Soulh End, Croydon CROIBF 01-688-2128

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS. TRANSISTORS, RESISTORS. CAPACITORS, POTENTIOMETERS. RELAYS TRANSFORMERS. ETC. ELECTRONIC BROKERS LTD. 49 Pancras Road. London, N.W.1. 01-837 7781

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.) Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. 01-203 1855 and 3033

GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

BAILEY 30 WATT AMPLIFIER

10 Tr's as spec'd and Fibreglass Pcb £6.7.6
12.10 .0 20 Tr's as spec'd and 2 Fibreglass Pcb's € 12.10 .0
$15 / 6$
 $\begin{array}{lcccc}\text { MJ481 25/6 MPF103 8/6 MJ49I 2 } & \text { 2/6 } \\ \text { RI-R27 (5\% low noise) \& P. } 10 / 6 \mathrm{Cl} \text {-C6 (Mullard) } 7 / 6\end{array}$ RI-R27 (5\% low noise) \& P. $10 / 6 \mathrm{Cl}$-C6 (Mullard) $/ 15 /-$
Mullard C $4312500 \mathrm{mFd} / 64$ w with clip Ali H/Sink (Drilled $2 \times$ TO3) $4 \times 4 \frac{1}{1} \mathrm{in}$

LINSLEY HOOD CLASS A AMP

Ser 10 C.F. R's 5/\% < MJ480. See 5 Capacicors 22/6 MJ480 (Matched for <0.1 \% T..H:D.) per pair $42 / 6$ MJ481 (Masched for <0.1\% T.H.D.) per palr $52 / 6$ 2N3906/2N4058/2N697/2Ni613 6/6 BC109 3/6 Pair of H/Sinks as spec'd for Mono $5 \times 4 \mathrm{in}$. Lekerokit Pinboard $4 \times 4 \frac{1}{2}$ in...pins \& Layout $5 / 6$ M1480 16/6 Hunes KAll2BT $2500 \mathrm{mFd} / 50 \mathrm{rww} 12 / 6$ A.I FACTORS. 72 BLAKE ROAD.STAPLEFORD, NOTTS.

UNIOUE TWIN TAPE DECK UNITS

These superb twin tape deck units were originally designed for installations requiring the continuous replay of music or speech when connected to suhable amplifiers. Consisting of two button $\&$ track modell. Each tape drive unit is fitted with a unique automatic solenoid operater tane drive reversal mechanism actuated by metallic stop foil at end of tape or inserted where reversal is desired. Constructed to the highest specification with the finest components avaliable to ensure the utmost reliability. Nothing has been spared in the construction and the superb heavy duty capstan motors (2 . off) and rewind motors (4 oth). top grade relays. solenolds. etc. all bear witness to the high standards set .
Available in two basic versions with either 3 or 6 button operation. The three pushbutton model 34 i.p. has interlocked controls operating both tape drive units simultaneously and is fitted with 2 Ferrograph $\frac{1}{2}$ track stereo heads. The 6 button $7 \frac{1}{\frac{1}{2}}$ i.p.s. model hat independent $50 \mathrm{c} / \mathrm{s}$ Vertical or horizontal operation. Size $19^{\prime \prime} \times 19^{\prime \prime} \times 8^{\prime \prime}$ deep. Weight $54 / \mathrm{lb}$.
TECHNICAL SPECIFICATION
 Weight 54 lbs 3 -Bunion model operates at $3\{$ IP.S 6 Burton model operates at 71 L.PS. TAPE REEL SIZES: Upper deck Sf, Lower deck 5. Capstan drive motors 2 AEI AC motors continuous ming Type BCi504-8. 230250 Votrs AC
 AC 50 di. Secondary $24-26.32 \mathrm{~V}$. RECTFIER. Sentecteel selinium rectitel type 460 SC 2181 5. CONDENSEAS: 1 Pressey 2.000 ut 50 v O.C. 2 ati 2ut 400V. Solendids: B Magnefir Devices lto Trpe 42765120 Ohms RELAYS: 2 Doubie coil relave TVme s92FIITS 5668590 Ohms. 2 Type S69E14/590/AEF2/24. 2 Type 596/9/89/G2/24. 2 Type $595 E 8 / 590 / 2 / 2413$ Button unit only 1). RECORO/REPLAY HEADS. 3 Button Unit firted 2 Ferrogragh 3500 hms impedance half track stereo heads 5 Button model fituod 2 Martion 4 track heads 500 Onms impedance

Originally costing approximately §450 each to manufacture we MODEL $E 50$ are aftering these at 6 BUTTON
fraction of their true worthil 35
MODEL MODEL LS

Limited number only we cannot quarantee a choice of 3 or 6 button units-orders deat 6 button units-orders dealt
with in strict rotatlon. with in strict rotation.

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W2/69 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-444 3155 (Sales) and 5278
ww- 101 FOR FURTHER DETAILS

PUCKA ENTERPRISES
3 Adamson Road, London, N.W. 3

ANY FOUR(DIFFERENT TYPES) FOR 2O/-SH.ONLY

*EC91	10/9	UF42	8/6
ECH42	9/\%	UL41	10/3
ECL83.	11\%	5R4GY	.8/6
EF40	8\%	*6BG6G	$11 / 9$
EL34	91-	*6BS7	16/
KTW61.	8/-		
PC86	10\%		8/6
PCC89	9\%	67653	19/\%
PCF802	9/-	6F33	19/-
- PCF806	11/-	*D88	15/-
*PFL200	12/-	*30L17.	14/6
*PL504.	12/6	-705A	25/-
UAF41	10/3	-5763.	11/6
UCL83.	. 10/=	-5933	50/=

ANY THREE (DIFFERENT TYPES) FOR 24/- SH. ONLY. EXCEPT THOSE MARKED ASTERISK. P/P 9d. PER VALVE. TERMS: CASH/P.O./GHEQUE WITH THE OROER. MANY OTHERS IN STOCK. ENQUIRE.

BULD YOURSELFA TRANSISTOR RADIO

ROAMER EIGHT ML 1 with tome CONIRDL SEVEN WAVEBANOS

 MW1. MW2. LW, SW1. SW2, SW3 AND TRAWIER GANO. 8 transistirs and 3 dioden. Ferrite pod aerial and pelescopit obrial. Sackes for car arial $7 x 4$ in Speonkel. Airspaced ganged turimg condensel. Earpiace zocket ond earpiece. Selectivity smith Sier $9 \times 7 \ldots 4$ in Tour Building Costr 56.19 .6 . P \& P 7/6. Plans and Paris fist 5/. (lfee with parts).POCKET FIVE, MED. AND LONG WAVES \& trawter band with speaker ano EARPIECE. 5 trensuition and 2 diodes. farite rod ellas. twning concensel. moving coil speakel, ete. $5 \frac{1}{2}$ at a 3 fin Total Buildimg Costs 4W/6. P. \& P. 3/8. Plans and Pants list $1 / 6$ froe with parts). WWI. MW2 IW, SW1 SW2 SW3 AND TRAWIER BAMO. TW. SW2, SWJ.ANO ThAWIER BANO. Itransisiors SWd 2 diodea Socket for car seriel, 1 In serter Arrasaced ganged turing condenset ere Siug $9 \times 7 \times$ in Total Bulding Cosis (5/99/6. P. \& P. 7/0. Personal earpiece with swiched soctet for private listeming 5/- extie. Plans and Parts list $3 /$ - tiree with parts).
THANSONA FIVE. MEOTUM. LOMG AND Thawlen band with speaker and EARPIECE. 5 THOnsstors and 2 diodes. lamie rind serial. moving coil speake. 6f $\times 4 \frac{1}{2} \operatorname{Ifin}$ Towal Buiding Coss 47/6 P. \& P. 3/9. Plans and Parts list $1 / 6$ fhee with pants).
transeight 6 wavebands. mw LW. 3 ShDht waves and thawler band. 8 Improved type trensistors and 3 diodera. Ferrita adod and telescopic astisia 3 in speaker. Push pull outpute. Sixy $9 x 5$ $\times 2 \mathrm{Jin}$ Toual Buihing Costs 89/6 P. \& P 5/6. Plans and Parts liar $\$ /$ - (thee with witt Personal earpiect with swithed sockel 'Phone 023452367
-Opan 10.1. 2.30-4.30. Sato 9.12
 1

Thanks to a bulk purchase we can offer

BRAND NEW
 P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable Brisish tape firm, our tapes are boxed in polyehene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.

Should goods not meet with full appi-oval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{fe} . & 2 /- & 5 \mathrm{in} . & 600 \mathrm{ft} . & 6 /- \\ 5 \sin . & 900 \mathrm{ft} . & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 / \%\end{array}\right.$

Postage on all orders 1/6
COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.
MC 60 \%/- each. MC 90 12/6 each. MC $12018 / 3$ each.
STARMAN TAPES
28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

 FOR RECEIVER MANUFACTURERSP. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET
4.STATION INTERGOM

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and 8ubs to Master. Operates on one $9 \dot{\text { v. battery. On/off switch. }}$ Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $7 / 6$ in U.K.

Same as 4 -Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6، P. \& P. 4/6.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \not \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory.
Price 27 gns. P. \& P. 14/6 in U.K.

TRemsea TIEPHOUEAMPITIER

Why not increase efficiency of Office, Shop and Warehouse with this incredible De.Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P, 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 98-111

Page

Page

	Page
Harmsworth Townley \& Co.	38
Harringay Photographic, Ltd.	116
Harris Electronics (London), Ltd..	67
Harris, P.	115
Hart Electronics	115
Harversons Surplus Co., Ltd.	115
Hatfield Instruments, Ltd.	46
Henrys Radio, Lid.	.68,69
Henson, R., Lid.	112
Holford, F., \& Co.	116
Howells Radio, Ltd.	66
I.C.S., Ltd.	72, 114
I.M.O. (Electronics), Ltd.	35
Impectron, Ltd.	32
Instructional Handbook Supplies	112
International Rectifier Co., Ltd. .	43
Jackson Bros. (London), Lid..	33
Keytronics.	92
Kingswood Supplies	112
Kinver Electronics, Lid.	72
Lasky's Radio, Lid.	84
Lawson Tubes	- 112
Ledon Instruments, Ltd	44
Levell Electronics, Lid.	31
Light Soldering Developments, Ltd.	. 28,49
Linear Products, Lid.	46
London Central Radio Stores.	113
L.S.T. Components	95
Lyons, Claude, Led.	4
Mainline Electronics, Ltd.	75
Marconi Instruments.	41
Marshall, A., \& Son (London), Ltd. .	90
Microelectronic Conference	36
Mills, W..	.92,93
Milward, G. F.	78
Modern Book Co.	. 116
Morganite Resistors, Ltd.	37
M.R. Supplies, Lid	42
Motorola Semiconductors, Lid.	58
Mullard, Lid.	2, 21, 52
Multicore Solders,	Cover iv
Neco Electronics (Europe), Led.	46
Nombrex, Lid.	46
O. \& R. Electronics, Let. .	74
Omron Precision Controls	35
Osmabet Ltd.	114
Oxley Developments, Ltd.	48
Parker, A. B..	74
Patrick \& Kinnic.	82
P.C. Radio, Ltd.	83
Peak Sound (Harrow); Lid.	47
Pinnacle Electronics, Ltd.	25
Plessey Electronics, Ltd..	27
Plessey Microelectronics	11
Prowest Electronics, Ltd.	54
Pucka Enterprises... 117
Quality Electronics, Ltd..	49
Quartz Crystal Co., Ltd......	113

Harringay Photographic, Ltd. 116Harris, P...
Radio \& Electronic Component Mfrs. Federation PageRadio \& TV Components, Lid.81
Radio Components Specialists. 114
Radio Exchange Co_{4} 117
Radiospares, Led.. 116
Ralfe, P. F.. 91
R.S.C. Hi-Fi Centres, Ltd. 86
R.S.T. Valves. 80
Research Communications 42
Rola Celestion, Ltd. 66
Salford Electrical Inst., Ltd. 16
Samsons (Electronics), Ltd 89
Sankyo Selki Mfg. Co., Ltd. 39
Service Trading Co. 87
Servo \& Electronic Sales, Lid. 74
Shure Electronics, Ltd. 22
Sinclair Radionics, Led. $63,64,65$
S.M.E., Led.. 12
S.N.S. Communications, Ltd. 18
Smith, G. W. (Radio), Ltd. 76,77
Starman Tapes. 117
Sugden, J. E. 49
Sutton Electronics, Ltd. 112
Sypha Sound Sales, Lid. 116
Teclare, Ltd. 113
Tektronix, Lid. Bound in insert
Telequipment, Ltd. 50
Teleradio, The, (Edmonton), Ltd. 116
Teonex, Ltd. 34
Thompson, A. J. 113
Thorn A.E.I. (Radio Valve \& Tubes), Lid. 55
Tinsley, H., \& Co., Ltd. 56
Trio Corporation. 7
Trio Instruments, Ltd. 80
Turner, E., Electrical Insts. 44
United-Carr Supplies, Ltd. 67
Universal. 113
Valradio, Ltd. 32, 40
Vitality Bulbs, Ltd. 40
Vortexion, Ltd.. 19
Walker-Spencer Components. 116
Watts, Cecil E., Lid 48
Wayne Kerr, The Co., Ltd.. 8
Webber, R. A., Ltd. 46
Welbrook Eng. \& Electronics, Ltd. 23
Wel Components, Lid. 42
Welwyn Tool Co. 48
West Hyde Developments, Ltd. 45
West London Direct Supplies. 118
Weyrad (Electronics), Lid. 117
Whiteley Elec. Radio Co., Ltd. 17
Wilkinsons, L. (Croydon), Lid. 84
Z. \& I. Aero Services, Lid.....

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS—STOCK ITEMS \star SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

Adcola House - Gauden Road • London • SW4 Tel. 01-622 0291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:
NAME
COMPANY
ADDRESS

When soldering fine copper wire, ordinary tin/lead solder alloys will absorb some of the copper, so that the diameter of the wire will be reduced.
Ersin Multicore Savbit Type 1 solder contains a small percentage of copper so that the solder is already 'saturated' with copper and will not absorb it from copper wire or copper laminate.
Savbit will also prolong the life of copper soldering iron bits by 10 times, thus eliminating the need for frequent resurfacing of copper bits and by keeping
the copper bits in good condition, the soldering speed and efficiency are increased. Savbit Type 1 alloy contains 5 cores of noncorrosive extra fast rosin based Ersin Flux. Melting point is $215^{\circ} \mathrm{C}$. Recommended bit temperature is $275^{\circ} \mathrm{C}$.
Savbit Type 1 alloy with Type 362 Ersin Flux has received Ministry approval under number DTD.900/ 4535. It may be used for soldering processes on equipment for Services use in lieu of solder to BS.219.

1 lb . REELS Available in all standard wire gauges from $10-34 \mathrm{swg}$. , on unbreakable plastic reels. (From $24-34$ swg. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel.)

$\left.\begin{array}{l}\text { FOR } \\ \text { MAINTENANCE } \\ \text { ANDSERVICE }\end{array} \begin{array}{r}\text { SIZE } 1 \text { CARTONS } \\ \text { In } 14,16 \text { and } 18 \text { swg. } \\ \text { Packed in a coil, so it } \\ \text { can be drawn out } \\ \text { through the top of } \\ \text { the carton }\end{array}\right)$

HOLLAND
Ersin Multicore Savbit Alloy is used by Bull Nederland of Amsterdam, Holland for the assembly of administration and statistics machines.

NEW ZEALAND Ersin Multicore Savbit Alloy is seen being used at the factory of Bell Radio Television Corpn. Ltd., Auckland, New Zealand.

[^16]MULTICORE SOLDERS LTD.. HEMEL HEMPSTEAD, HERTS. Telephone: HEMEL HEMPSTEAD 3636

[^0]: Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW.

[^1]: To Business Conferences \& Exhibitions Ltd. (MIC 70), Mercury House, Waterloo Road, London S.E. 1

[^2]: Unpublished paper

[^3]: \dagger "Constant amplitude characteristic" means here that the records will have been recorded in such a way that a perfect zero impedance amplitude-sensitive pickup would produce a signal requiring nofurther correction

[^4]: *Sometimes the impedance of a pickup is quoted as, say, $2 \mathrm{M} \Omega$ - This practice is misleading, because owing to its capacitance the impedance is inversely proportional to frequency, and almost purely reactive. Obviously the pickup will have a reactance of $2 \mathrm{M} \Omega$ at only one frequency ($\sim 50 \mathrm{~Hz}$) 】 think, to0, that an impression exists that one has to "match" a pickup to an amplifier like matching a loudspeaker to the amplifier output stage. Perhaps matching is an appropriate expression for the pickup case, but the reasons that govern the choice of "matching" impedances are quite different in the two cases. [See p. 66-Ed.]

[^5]: *This is true because tow-impedance loading would produce a very small output voltage alt hough giving a flat frequency response in principle. A smaller output voltage would aggravate the noise problem, and in any case the value of R required to make $f_{\text {mas }}=50 \mathrm{~Hz}$ is 160Ω which is already less than the actual a.c. resistance of the pickup coil! Intermediate loading is practicable though with many magnetic pickups.

[^6]: *See for example, "Measuring pickup performance" J. Walton, Wireless World, December 1967.

[^7]: TThis means the moving spring in the symbol: it may or may not be the moving spring in the contact unit itself. The mechanical design of some keys is such that changeover action is achieved by moving two springs situated on either side of a stationary centre spring. When the key is operated one or other of the moving springs is brought into contact with the centre spring: electrically therefore the centre spring is the moving contact and is so represented in the symbol.

[^8]: \ddagger B.S. 3939: Graphical Symbols for Electrical Power, Telecommunications and Electronics Diagrams.

[^9]: *Dept of Physics. The University of Aston in Birmingham.

[^10]: *Royal Radar Establishment

[^11]: *Royal Naval College, Greenwich

[^12]: *University of California, Santa Cruz. California

[^13]: FIELD TELEPHONES TYPE L. Generator ringing,

[^14]: Send this coupon for full details and application form:-
 Room 705, The Adelphi, John Adam Street, London WC2 marking your envelope 'Recruitment'

 Name

[^15]: Men under 35 with experience in light engineering and electronics can build excellent careers in ICL servicing computers.

 We want qualified men with HNC or $\mathrm{C} \& \mathrm{G}$ in electronics engineering, or a Forces training in electronics. Or, perhaps, you have a similar qualificationwhich provesyou have the seriousinterest in the subject necessary for further specialist training.

 We pay realistic salaries while you trainabout six months - on ICL equipment, learning how to sort out operational problems and maintain computers in peak condition.

 You will have to take responsibility for highly sophisticated and expensive equipment, so if you have a worth while career in mind, here is the chance to apply your expertise and initiative to the full. Career progression and promotion are limited only by your ability.

 On top of your basic salary we pay generous overtime and shift rates, plus travelling expenses. Working conditions in ICL are well above the average in industry.

 Write giving. brief details of your career, quoting reference WW 103 C .
 A. E. Turner, International Computers Limited, 85/9I Upper Richmond Road, Putney, London SWIS.

[^16]: For further details, please apply on your Company's notepaper to

